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Abstract – Radiopharmaceutical therapy (RPT) using [¹⁷⁷Lu]Lu-PSMA-617 requires accurate dosimetry 

to evaluate organs-at-risk (OAR), specifically the kidneys. Single-time-point (STP) dosimetry simplifies 

clinical workflows by reducing SPECT/CT acquisition. Machine learning (ML) offers a potential solution, 

yet clinical implementation is hindered by the scarcity of sufficient training datasets for ML-based studies. 

This study investigated the relationship between training dataset size and time-integrated activity (TIA) 

estimation accuracy. A Linear Support Vector Regression (L-SVR) model was trained on synthetic virtual 

patients (VPs, 5,000 total) simulated from a published PBMS NLMEM renal biokinetics at five imaging 

times (t=1.8 h, 18.7 h, 42.6 h, 66.2 h, and 160.3 h). Time-activity-curve (TAC) and reference TIA (rTIA) 

were calculated for each VP. Random sampling was performed in increasing dataset sizes. Sample sizes 

were sub-sampled to training (80%) and testing (20%) datasets. L-SVR was trained on STP data at 42.6 

h post-injection (best-time-point of PBMS NLMEM study) from the training dataset and tested by 

generating estimated TIA (eTIA) with input from the testing dataset. Performance was evaluated by 

calculating root-mean-square-error (RMSE) and mean-absolute-percentage-error (MAPE) of the eTIA to 

rTIA. Results showed that the accuracy of eTIA from ML STP dosimetry depends on training size: small 

samples (n=10) yielded poor performance (RMSE>85.98%, MAPE>89.1%). Accuracy improved 

significantly at n=500 (RMSE=14.07%) and plateaued beyond n=1,000 (peak RMSE=13.07%). Results 

indicate that the L-SVR model of the study requires sample sizes of n>200, with optimal gains up to 

n=2,000. This study suggests synthetic data as a methodological bridge between limited clinical datasets 

and data-intensive ML approaches. 
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1. Introduction 

Radiopharmaceutical therapy (RPT) using [¹⁷⁷Lu]Lu-PSMA-617 has shown considerable efficacy in 

treating various types of prostate cancer, including metastatic castration-resistant prostate cancer (mCRPC) 

[1-3]. Optimising treatment efficacy requires maximising tumour radiopharmaceutical uptake while 

sparing organs-at-risk (OAR), such as the kidneys. [4]. Dosimetry is a tool that allows the evaluation of 

radiopharmaceutical uptake, so that the estimation of absorbed doses on various targets and OARs may be 

performed. For example, determining radiation dose to the kidneys is considered to be important as it is 

considered the primary OAR in [¹⁷⁷Lu]Lu-PSMA-617 therapy. The accuracy of such techniques relied 

heavily on the accuracy of the estimation of time-integrated activity (TIA), a parameter that represents the 

total number of radionuclide decays in any given target and OARs. [5]. The Medical Internal Radiation 

Dose (MIRD) formalism is the standard for clinical application of dosimetry, yet the challenge of serial 

quantitative imaging in a clinical setting for the estimation of TIA remained a hindrance for routine 

implementation.[6,7]. Reducing the number of required quantitative imaging would decrease operational 

burden and increase the likelihood of implementing individualised therapy. This is especially important for 
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nuclear medicine departments with limited inpatient capacity, imaging devices, qualified medical staff, and 

other factors that hinder implementation of therapy dosimetry. 

To address these challenges, novel dosimetry methods, such as single-time-point (STP), were proposed 

as a potential solution to lower the workload for clinical dosimetry. Attempts have been made to develop 

methodologies, such as the study conducted by Hänscheid et al [8] and Madsen et al. [9], which are the 

frequently used STP methods in the literature. Hänscheid et al fitted a monoexponential decay model to 

biokinetic data to determine which model had the best accuracy given STP data. Madsen et al. 

mathematically derived a decay model and fitted biokinetic data to find an average population parameter 

to estimate TIA using STP data.  

Machine learning (ML) has been proposed to offer the utility of learning complex biokinetics directly 

from data [10,11].Recent development came from the study by Gomes et al [12], which introduced an STP 

method utilising Support Vector Regression (SVR) to predict effective half-life from a single scan time. 

They, however, did not highlight the challenge commonly faced in this type of study, which is the size of 

training data, and how it may impact TIA estimation accuracy. Statistical models, especially ones based on 

supervised training, develop better as they are given a large training dataset to minimise variance and 

overfitting, as shown in other fields [13-15]. Training on small cohorts carried the risk that the model would 
learn a narrow, patient-specific noise rather than population biokinetics. This limitation challenged the 

application of the model on a new patient population. 

To determine the optimal sample size for clinical implementation, it is necessary to quantify the data 

requirements for ML-based dosimetry. This study was performed to systematically investigate the 

relationship between training dataset size on TIA estimation accuracy. It is hypothesised that estimation 

error will decrease as sample size increases, up to a point where additional training volume does not 

increase model performance considerably. To achieve said goal, this study employed a Linear Support 

Vector Regression (L-SVR) model trained on a large synthetic cohort of 5,000 virtual patients (VP), 

simulated based on a function derived from a population-based model selection non-linear mixed-effects 

model (PBMS NLMEM) from Hardiansyah et al. [16]. This method allows for a controlled analysis of how 

training dataset size influences TIA estimation accuracy, providing a landmark for future data collection 

that requires the application of ML in STP dosimetry. 

2. Materials and Methods 

2.1. PBMS NLMEM  

The basis for simulating the virtual patient cohort was derived from an STP renal dosimetry study on 

[¹⁷⁷Lu]Lu-PSMA-617 therapy, as reported by Hardiansyah et al.[16]. The study implemented population-

based model selection with a non-linear mixed-effects model (PBMS NLMEM) on biokinetic data obtained 

from 63 patients with metastatic castration-resistant prostate cancer (mCRPC). The biokinetic data describe 

the radioactivity retention in the kidneys, measured by SPECT/CT imaging at five time points after 

injection, with the average imaging times after injection for the patient population as follows: TP1: 1.8 h, 

TP2: 18.7 h, TP3: 42.6 h, TP4: 66.2 h, and TP5: 160.3 h. The models were evaluated by goodness-of-fit 

and Akaike weight test, and the best performing model, as reported by the authors, was the four-exponential 

equation 𝑓6𝑎(𝑡) and provided as Eq. 1: 

𝑓6𝑎(𝑡) = 𝐴1𝑒−(𝜆1+𝜆𝑝ℎ𝑦𝑠)𝑡 + 𝐴2𝑒−(𝜆2+𝜆𝑝ℎ𝑦𝑠)𝑡 − 𝐴3𝑒−(𝜆3+𝜆𝑝ℎ𝑦𝑠)𝑡 − (𝐴1 + 𝐴2 − 𝐴3)𝑒−(𝜆𝑏𝑐+𝜆𝑝ℎ𝑦𝑠)𝑡 (1) 

The time-integrated activity (TIA) may be obtained by analytically integrating Eq. 1 with respect to 

time from 𝑡 = 0 to 𝑡 = ∞. The resulting analytical solution is given by eq. 2: 

𝑇𝐼𝐴 = ∫ 𝑓6𝑎(𝑡)𝑑𝑡 =
∞

0
(

𝐴1

𝜆1+𝜆𝑝ℎ𝑦𝑠
) + (

𝐴2

𝜆2+𝜆𝑝ℎ𝑦𝑠
) − (

𝐴3

𝜆3+𝜆𝑝ℎ𝑦𝑠
) − (

𝐴1+𝐴2−𝐴3

𝜆𝑏𝑐+𝜆𝑝ℎ𝑦𝑠
)  (2) 

2.2. Software 

The simulation of TAC, machine learning (ML) training, and performance evaluation workflows were 

implemented using the Python 3.13 programming language. Key libraries used in this study were: NumPy 
2.1.3 for efficient numerical operations and array manipulation; scikit-learn 1.6.1 for implementing and 

training ML models, and matplotlib 3.10.0 for data visualisation and graphical analysis. 
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2.3. L-SVR 

The ML model chosen for this study was the Linear Support Vector Regression (L-SVR) model. This 

model is highly efficient and scalable, which is appropriate for the needs of the study that required handling 

of large datasets. L-SVR avoids inefficient kernelization that may increase computational complexity, 

ensuring faster convergence and lower memory consumption during training [17,18]. This efficiency was 

essential to conduct the systematic performance analysis across increasingly large training set sizes. 

2.4. Study Workflow 

The study was structured into four main steps: virtual patient (VP) simulation, data preparation, ML 

training and prediction, and performance evaluation as shown in Fig 1. 

 

Figure 1. Flowchart of the Study 
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2.4.1. Simulation 

The simulation step involved generating a large synthetic dataset based on established PBMS NLMEM 

exponential function (Eq. 1) and the reported distribution of the parameters (Table 2 of ref. [16]), stated as 

means and variances. The total number of VP generated was 5,000. Each VP corresponds to a single, 

randomly sampled set of the individual six biokinetic parameters defined in Eq 1. For each VP, Eq 1. was 

used to calculate the simulated activity values at five time-points post-injection (p.i.): TP1: 1.8 h, TP2: 18.7 

h, TP3: 42.6 h, TP4: 66.2 h, and TP5: 160.3 h. The five activity values were simulated as a percentage of 

injected activity (%IA) and served as the input ML feature for the STP analysis. Substituting the parameters 

on all simulated TACs into the Eq. 2 will allow the calculation of the ground truth reference TIA (rTIA) 

for all VPs, which can serve as the target variable in ML training. 

2.4.2. Data Preparation 

The large data matrix (5,000 VPs × 5 time points) was processed and sub-sampled to investigate the 

relationship between training size and model performance. To systematically evaluate the impact of 
training size, multiple reduced datasets were generated by performing random sampling on the following 

sample sizes: 𝑛 = [10, 20, 50, 100, 200, 500, 1000, 2000, 5000]. To simulate clinical uncertainty that 

comes with SPECT/CT imaging (intra-individual variability), a random Gaussian error was added to the 

five simulated activity values for each VP. This noise was based on the fractional standard deviation (FSD) 

of 7.9% based on the published study [16]. The mathematical description of adding the error for the activity 

values was given in Eq. 3: 

𝐴𝑛𝑜𝑖𝑠𝑦(𝑡) = 𝐴𝑡𝑟𝑢𝑒(𝑡) × (1 + 𝐹𝑆𝐷 × 𝒩(0,1))  (3) 

Where 𝐴𝑡𝑟𝑢𝑒 is the simulated activity without noise, 𝐴𝑛𝑜𝑖𝑠𝑦 is the simulated activity with noise, and 𝒩 

is a random number following a Gaussian distribution with a mean of 0 and a standard deviation of 1. 

Each sub-sampled dataset was further split into a training dataset (80%) and a testing dataset (20%) 

[19,20]. This splitting of the sub-sampled dataset was repeated for every sample size step. 

2.4.3. Model Training 

The L-SVR ML model was then trained iteratively across all sample sizes derived from the previous step. 

The model was trained using the noise-added STP activity values as input features and optimised to predict 

the corresponding rTIA. The trained model was then used to predict the eTIA for the remaining 20% of 

the sub-sampled dataset (test set). ML learning and performance evaluation of this study were performed 

for STP dosimetry at 42.6 h p.i., as it was reported that the PBMS NLMEM performed best at this time-

point [16]. 

2.4.4. Performance Evaluation 

The accuracy of the model was quantified by comparing the eTIA against the rTIA. The metric for 

comparing individual estimation accuracy was the relative deviation (RD), calculated as the fractional 

difference between eTIA and rTIA (Eq. 4): 

𝑅𝐷 =
𝑒𝑇𝐼𝐴−𝑟𝑇𝐼𝐴

𝑟𝑇𝐼𝐴
× 100%   (4) 

Once the RD of all sub-sampled datasets were calculated, the overall performance of the ML model can 

be quantified by the performance metrics root mean square error (RMSE) and mean absolute percentage 

error (MAPE), as given in Eq. 5 and 6: 

𝑅𝑀𝑆𝐸 = √𝑆𝐷𝑅𝐷2 + (𝑚𝑒𝑎𝑛 𝑅𝐷)2  (5) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑒𝑇𝐼𝐴−𝑟𝑇𝐼𝐴

𝑟𝑇𝐼𝐴
| × 100%    (6) 

In this study, eTIA with RD of over 20% were defined as outliers. This metric is relevant because low 

RMSE and MAPE values in the population may contain individuals with high RD values. This metric was 

shown as the number and percentages of eTIA relative to the size of the testing dataset above the following 

error thresholds: 5% (acceptable error), 10% (moderate error), and 20% (outliers). 
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3. Results 

As detailed in Table 1, the model accuracy improved as the sample size increased, as can be seen by the 

drop in RMSE and MAPE. At small sample sizes (𝑛 = 10, 𝑛 = 20), the model showed poor estimation 

accuracy, with RMSE above 81% and MAPE above 71%. An inflexion point can be seen as the training 

set size increased: from 𝑛 = 20 to 𝑛 = 200, there is a sharp reduction in RMSE and MAPE, reducing 

from 81.02% to 17.44% and 78.51% to 13.54%, respectively. Beyond 𝑛 = 200, however, estimation 

accuracy gains began to diminish. The metrics largely stabilised beyond 𝑛 = 1000 , suggesting a 

saturation point where additional training data may not increase estimation accuracy significantly. 

Sampling schedule at 42.6 was chosen to be viewed in Table 1 as evaluation showed that it has the best 

estimation accuracy based on RMSE, MAPE, and RD outlier analysis. 

Table 1. Summary of performance metrics of the L-SVR model at 42.6 h 

Sample 

Size (n) 
RMSE MAPE 

RD>5% 

(#) 

RD>5% 

(%) 

RD>10% 

(#) 

RD>10% 

(%) 

RD>20% 

(#) 

RD>20% 

(%) 

10 85.98 89.1 2 100 2 100 2 100 

20 81.02 78.51 4 99.95 4 99.85 4 100 

50 63.12 52.16 10 98.62 10 97.24 9 93.33 

100 35.05 26.43 19 93.54 17 86.89 14 66.67 

200 17.44 13.54 32 78.96 23 58.18 9 25 

500 14.07 11.73 73 73.35 49 49.35 17 14.67 

1000 13.36 11.51 145 72.36 96 48.16 32 17.17 

2000 13.14 11.51 290 72.39 191 47.87 63 14.58 

5000 13.07 11.54 724 72.43 479 47.93 159 15.97 

 

The impact of sample size was further analysed by evaluating the distribution of RD, particularly the 

reduction of estimation outliers. As shown in Fig 2, at low sample sizes, the estimations are highly 

unreliable, as nearly 100% of the estimations had RD of over 20% relative to the rTIA. Reliability improves 

as the sample size increases, as seen at 𝑛 = 200 where the proportion of outliers dropped to 14.58%. At 

𝑛 = 2000, the percentage of moderate errors reached a minimum of 47.87%, and outliers stabilised at 

14.58%. 

  

a)        b) 

Figure 2. Learning curve graph of the L-SVR model at 42.6 h: a) showed the decrease of RMSE due to increasing 

sample size, and b) for MAPE, both in percentages. 

Both the RMSE graph and MAPE graph exhibited similar decay in estimation error as the training set 

size increased. The model was shown to have a low error floor, stabilising at an RMSE of approximately 

12-14% 
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4. Discussion 

The main finding of this study is the importance of training dataset size, as the estimation accuracy of the 

L-SVR model has been shown to depend on the training dataset size. The sharp decrease in error (both 

RMSE and MAPE) observed between 𝑛 = 50 and 𝑛 = 200 indicated that a certain amount of data is 

required for the L-SVR model to adequately capture the relationships between STP data and the 

corresponding TIA. This finding showed that with a small sampling cohort, the reliability of ML training 

was lowered. The results of this study showed that with small sample sizes (𝑛 < 20), the model failed to 

take into account underlying population variability, as reflected by RMSE exceeding 80%.  

In addition to basic accuracy, analysing the outliers provided additional insight. As the sample size 

increased from 200 to 500, while the reduction of RMSE is about 3.37%, the number of outliers decreased 

by 10.33%. This implies that the unreliability of the model in small-cohort studies may be caused by a lack 

of data. It stands to reason that future attempts to integrate ML into a clinical dosimetry setting must 

incorporate an adequate volume of clinical dataset, and may be supplemented by synthetic data, as shown 

in this study, if required. 

It was observed that the estimation accuracy at 𝑛 = 5000  was slightly lower than at 𝑛 = 2000 

(slight increase of MAPE and estimations over RD thresholds). This small change in performance may be 

caused by stochastic variability in the error simulation rather than a true degradation of model performance. 

The reasoning behind this is that for 𝑛 > 1000The quantification of the model performance reported 

values which are very close to each other, which implies the model is approaching an asymptotic limit to 

the model performance. 

The practical challenges of recruiting over 2,000 patients for a single dosimetry study, the results of this 

study suggest that synthetic data and VPs may serve as a methodological aid. Given a reliable population 

model, generating large volumes of synthetic data that can be used for ML training is feasible. However, 

this method still inherently has limitations. The method, as outlined in this study, assumes that the 

biokinetic model used perfectly represents the population for which the model is used. The simulation 

assumes that imaging was performed at schedules exactly as it was defined, whereas in reality, actual scan 

times vary around a population average. Finally, the results of this study are limited to kidney dosimetry 

as the primary OAR of [177Lu]Lu-PSMA-617 therapy, as performance may be different for other organs or 

even tumour lesions. The performance of the L-SVR model in this study is promising, and may be 

improved further with the inclusion of additional patient-specific physiological or biomarker as input 

features that may capture inter-patient variability more comprehensively. 

5. Conclusion 

This study has shown that the accuracy of ML-based dosimetry depends on the training dataset size. An L-

SVR model was trained on a large synthetic cohort of [177Lu]Lu-PSMA-617 renal dosimetry with STP data. 

Results showed that small-cohort datasets (𝑛 < 50) are insufficient for capturing the population variability 

when using ML for calculating TIA with only biokinetic data as the input feature. The findings of this 

study suggest that increasing training size beyond 200 patients and up to about 2000 was associated with 

increased model performance. However, additional studies are required to validate these findings. 

As it is challenging to recruit large patient cohorts, particularly in single-centre dosimetry studies, this 

study has shown the utility of implementing VPs to simulate synthetic data as a methodological bridge. It 
is proposed that future clinical dosimetry workflows may incorporate reliable population models to 

simulate large synthetic pre-training data, including patient-specific physiological or biomarker as input 

features for ML-based dosimetry methods in routine clinical practice. 
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