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Abstrak – Penelitian ini menyelidiki penyelesaian numerik dari persamaan Schrodinger takgayut waktu 

untuk osilator harmonik kuantum dengan metode beda hingga. Osilator harmonik dinyatakan dengan 

potensial berbentuk fungsi kuadrat, adalah model dasar dalam mekanika kuantum karena aplikasinya 

yang luas mulai dari vibrasi molekul sampai teori medan kuantum. Persamaan Schrodinger bergantung 

waktu, adalah persamaan diferensial orde dua, yang biasanya menghadapi masalah jika diselesaikan 

secara analitik untuk potensial yang bentuknya komplek. Metode beda hingga menjadi pilihan yang 

menarik, mengubah persamaan differensial kontinyu menjadi sebuah sistem persamaan linear yang dapat 

diselesaikan secara komputasi dengan kode program komputer. Dalam penelitian ini domain spasial 

dideskritkan dan turunan kedua dihitung dengan beda sentral, mentransformasi TISE ke dalam matrik 

tridiagonal yang merepresentasikan Hamiltonian dari sistem. Dengan mencari penyelesaian dari 

masalah matrik eigenvalue ini, diperoleh fungsi gelombang dan energi. Hasil penyelidikan menunjukkan 

metode beda hingga mampu menyelesaikan TISE untuk osilator harmonik dengan efektif. Hasil yang 

diperoleh metode beda hingga sangat mendekati hasil analitik. Dari hasil regresi linear memperlihatkan 

secara berurutan nilai gradien (m), koefisien regresi (c) dan koefisien determinasi (R2) mendekati nilai 

ideal yaitu: 1, 0 dan 1. Hasil uji z juga memperlihatkan nilai z hitung < z kritis, mengindikasikan hasil 

perhitungan fungsi gelombang dan rapat kebolehjadian baik dengan metode beda hingga maupun analitik 

adalah sama dengan tingkat kepercayaan 95 persen.  

Kata kunci: Persaman Schrodinger; osilator harmonic; beda hingga; uji z; regresi linear 

Abstract – This research investigates the numeric solution of the time-independent Schrödinger equation 

for the quantum harmonic oscillator by finite difference approach. The harmonic oscillator, described by 

a quadratic function potential, is a fundamental model in quantum mechanics due to its broad 

applications, ranging from molecular vibrations to quantum field theory. The time-independent 

Schrödinger equation is a second-order differential equation that typically poses challenges when solved 

analytically for complex potentials. The finite difference method become an attractive choice as it 

transforms the continuous differential equation into a system of linear equations that can be 

computationally solved through computer programming code. In this study, the spatial domain is 

discretized, and the second derivative is calculated by using central differences, transforming the TISE 

into a tridiagonal matrix representing Hamiltonian of system. By finding solutions to this matrix 

eigenvalue problem, wavefunctions and eigenvalues are obtained. The study results demonstrate that the 

finite difference approach effectively solves the TISE for the harmonic oscillator. The results obtained by 

using the finite difference method closely approximate the analytical results. The linear regression results 

show respectively that the gradient (β1), regression coefficient (β0) and coefficient of determination (R²) 

approach ideal values of 1, 0, and 1. The z-test results also show that the value of calculated z < critical 

z, indicating that the wavefunction and probability density, whether estimated by using finite difference 

approach or analytical methods, are equivalent with confidence level of 95 percent.  

Keywords: Schrodinger equation; harmonic oscillator; finite difference; z-test; linear regression. 
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1. Pendahuluan 

Persamaan Schrodinger takgayut waktu (Time Independent Schrodinger Equation (TISE)) adalah 

persamaan dasar dalam mekanika kuantum yang dipakai untuk menjelaskan keadaan stasioner dari sistem 

kuantum. Dalam sistem satu dimensi, TISE bisa dituliskan sebagai: -ħ2/2m d2ψ(x)/dx2 +V(x)ψ(x)=Eψ(x). 

dengan ħ adalah konstanta Plank tereduksi, m adalah massa partikel, V(x) adalah energi potensial sebagai 

fungsi posisi x, E adalah energi total dan ψ(x) adalah fungsi gelombang dari partikel. 

Osilator harmonik dengan potensial yang diberikan dengan: V(x) = ½ mω2x2 [1] berfungsi sebagai 

model prototipe dalam mekanika kuantum karena bentuknya yang sederhana dan aplikasinya yang luas. 

Banyak sistem fisika seperti: vibrasi molekul, phonon di dalam fisika zat padat dan beberapa pendekatan 

di bidang kuantum bisa dimodelkan dengan osilator harmonik. Penyelesaian analitik dari TISE untuk 

osilator harmonik menghasilkan penyelesaian dalam bentuk polinomial Hermite yang merepresentasikan 

tingkat energi yang diperbolehkan [2]. Namun pencarian penyelesaian analitik bisa menjadi tantangan atau 

masalah untuk sistem dimensi yang lebih tinggi. Konsekuensinya, metode numerik menjadi alat penting, 

khususnya dalam kasus dimana potensial lebih rumit atau penyelesaian eksak tidak mungkin dilakukan. 

Metode beda hingga (finite difference) adalah sebuah metode numerik yang umum digunakan untuk 

menemukan penyelesaian persamaan differensial, termasuk TISE [3]. Metode ini meliputi pendiskretan 

domain ruang ke dalam sejumlah grid titik tertentu dan menyelesaikan turunan dengan rumus beda hingga. 

Dalam konteks TISE, turunan kedua dari fungsi gelombang dapat digantikan dengan persamaan 

diferensial, menghasilkan sistem persamaan aljabar yang mendekati persamaan diferensial. Metode beda 

hingga mengubah TISE ke dalam sebuah masalah matrik eigen value. Pendekatan diskret ini membolehkan 

perhitungan eigen function dan eigen value dengan menyelesaikan persamaan matrik hasil. Metode beda 

hingga berguna khususnya untuk mengkaji sistem dengan potensial yang berbeda dari bentuk dasarnya, 

karena metode ini bisa disesuaikan dengan mudah untuk setiap bentuk fungsi V(x). 

Penyelesaian TISE untuk osilator harmonik yang dihasilkan metode beda hingga perlu dibandingkan 

dengan hasil analitik. Uji statistik seperti model regresi linear, uji t dan uji diperlukan untuk meyakinkan 

secara kuantitatif apakah penyelesaian dari metode numerik sudah sama dengan penyelesaian metode 

analitik. Dengan uji z atau uji t kita dapat menyimpulkan bahwa penyelesaian dari kedua metode tersebut 

sudah sama atau berbeda dengan tingkat kepercayaan tertentu, misal: 90, 95 atau 99 persen [4, 5]. 

2. Landasan Teori  

2.1 Penyelesaian Persamaan Schrodinger takgayut waktu untuk osilator harmonik 

Persamaan Schrodinger tidak bergantung waktu (time independent Schrodinger equation (TISE) yaitu [6]: 

 
−ħ2

2𝑚

𝜕2ψ(𝑥)

𝜕𝑥2
+ 𝑉(𝑥)ψ(𝑥) = 𝐸ψ(𝑥) (1) 

Untuk osilator harmonic, energi potensial V(x) dinyatakan dengan [7]:  

 𝑉(𝑥) =
1

2
𝑘𝑥2 =

1

2
𝑚𝜔2𝑥2 (2) 

dengan 𝜔 = √𝑘 𝑚⁄  adalah frekuensi sudut dan x adalah posisi. Bentuk kurva V(x) diperlihatkan pada 

Gambar 1.  

 

Gambar 1. Potensial pada osilator harmonik. 
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Sehingga untuk osilator harmonik Persamaan (1) akan berubah menjadi: 

−ħ2

2𝑚

𝜕2ψ(𝑥)

𝜕𝑥2
+
1

2
𝑚𝜔2𝑥2ψ(𝑥) = 𝐸ψ(x) (3) 

atau bisa ditulis 

𝐻̂ψ(𝑥) = 𝐸ψ(x) (4) 

dimana 𝐻̂ adalah Hamiltonian untuk osilator harmonik: 

𝐻̂ =
−ħ2

2𝑚

𝜕2

𝜕𝑥2
+
1

2
𝑚𝜔2𝑥2 (5) 

Penyelesaian dari Persamaan (3) diperoleh dengan mendefinisikan sebuah variabel tidak berdimensi   

yaitu: 

ξ = √
𝑚𝜔

ħ
𝑥 (6) 

sehingga TISE berubah menjadi: 

𝜕2ψ(ξ)

𝜕ξ2
= ξ2ψ(ξ) −

2𝐸

ħ𝜔
ψ(ξ) (7) 

misal 𝜖 =
𝐸

ħ𝜔
 adalah besaran tidak berdimensi (dimensionless quantity), maka Persamaan (7) akan menjadi: 

𝜕2ψ(ξ)

𝜕ξ2
= ξ2ψ(ξ) − 𝜖ψ(ξ) (8) 

jika besar atau ξ → ∞  maka Persamaan (8) bisa disederhanakan menjadi: 

𝜕2ψ(ξ)

𝜕ξ2
≈ ξ2ψ(ξ) (9) 

Sehingga penyelesaian untuk ξ → ∞    

ψ(ξ)~𝑒−ξ
2/2 (10) 

Sehingga kita mencari penyelesaian berbentuk: 

ψ(ξ)~ℎ(ξ)𝑒−ξ
2/2 (11) 

dimana ℎ(ξ) adalah fungsi polinomial. Dengan mensubstitusikan Persamaan (11) ke dalam TISE 

(Persamaan (8)) akan memberikan persamaan differensial dalam ℎ(ξ) 

𝜕2h(ξ)

𝜕ϛ2
− 2ξ

𝜕ℎ(ξ)

𝜕ξ
+ (𝜖 − 1)ℎ(ξ) = 0 (12) 

Penyelesaian dari persamaan diferensial ini berbentuk polinomial yang disebut polinomial Hermite Hn(x). 

Persamaan differensial Hermite biasanya ditulis dalam index n, yang menyatakan bilangan kuantum yang 

terkait dengan tingkat energi En: 

𝐻𝑛 (√
𝑚𝜔

ħ
𝑥) atau 𝐻𝑛 (

𝑥

𝑥0
) (13) 

Dimana 
1

𝑥0
= √

𝑚𝜔

ħ
. Sehingga penyelesaian dari TISE yaitu [8]: 

𝜓𝑛(x) = 𝑁𝑛𝐻𝑛 (
𝑥

𝑥0
)𝑒−

𝑚𝜔𝑥2

2ħ  (14) 

dimana 𝑁𝑛 adalah konstanta normalisasi, 𝐻𝑛 adalah polinomial Hermite dan n adalah bilangan quantum. 

Konstanta normalisasi adalah konstanta yang dipakai untuk menormalisasi fungsi gelombang 𝜓𝑛(x) 
sehingga [8]: 

∫ |𝜓𝑛(x)|
2∞

−∞
dx = 1 (15) 
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mengganti 𝜓𝑛(x):  

∫ |𝑁𝑛𝐻𝑛 (
𝑥

𝑥0
)𝑒−

𝑚𝜔𝑥2

2ħ |
2

∞

−∞
dx = 1 (16) 

Persamaan ini bisa dijabarkan sebagai: 

𝑁𝑛
2 ∫ [𝐻𝑛 (

𝑥

𝑥0
)]
2
𝑒−

𝑚𝜔𝑥2

2ħ
∞

−∞
dx = 1 (17) 

Dari Persamaan (17) akan diperoleh konstanta normalisasi Nn [7]: 

𝑁𝑛 = (
𝑚𝜔

𝜋ħ
)

1

4 1

√2𝑛𝑛!
 (18) 

2.2 Penyelesaian turunan dengan metode beda hingga (finite difference) 

Turunan (derivative) dapat dihitung secara numerik dengan memakai metode Beda Hingga. Turunan 

pertama f’(x) dari fungsi f(x) pada xi dapat ditentukan dengan 3 cara yaitu: beda maju, beda mundur dan 

beda sentral. Ilustrasi dari metode ini diperlihatkan pada Gambar 2.  

 

Gambar 2. Metode beda hingga. 

Ketiga metode tersebut diuraikan secara rinci berikut ini [10]: 

a) Beda maju (forward difference) 

 𝑓′(𝑥𝑖) ≈
𝑓(𝑥𝑖+∆𝑥)−𝑓(𝑥𝑖)

∆𝑥
=
𝑓(𝑥𝑖+1)−𝑓(𝑥𝑖)

∆𝑥
 (19) 

b) Beda mundur (backward difference) 

 𝑓′(𝑥𝑖) ≈
𝑓(𝑥𝑖)−𝑓(𝑥𝑖−∆𝑥)

∆𝑥
=
𝑓(𝑥𝑖)−𝑓(𝑥𝑖−1)

∆𝑥
 (20) 

c) Beda sentral (central difference) 

 𝑓′(𝑥𝑖) ≈
𝑓(𝑥𝑖+∆𝑥)−𝑓(𝑥𝑖−∆𝑥)

∆𝑥
=
𝑓(𝑥𝑖+1)−𝑓(𝑥𝑖−1)

∆𝑥
 (21) 

dimana xi+x dan xi-x dinyatakan dengan xi+1 dan xi-1, secara berurutan. Jika kita menentukan turunan 

pertama dengan metode beda maju: 

 𝑓′(𝑥𝑖) ≈
𝑓(𝑥𝑖+1)−𝑓(𝑥𝑖)

∆𝑥
  

Maka turunan kedua f”(x) dapat dinyatakan dengan: 

 𝑓′′(𝑥𝑖) ≈
𝑓′(𝑥𝑖+1)−𝑓

′(𝑥𝑖)

∆𝑥
 (22) 

Jika turunan pertama pada Persamaan (22) ditentukan dengan metode beda mundur maka akan 

menghasilkan: 
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 𝑓′′(𝑥𝑖) ≈

𝑓(𝑥𝑖+1)−𝑓(𝑥𝑖)

∆𝑥
−
𝑓(𝑥𝑖)−𝑓(𝑥𝑖−1)

∆𝑥

∆𝑥
 (23) 

 

 𝑓′′(𝑥𝑖) ≈
𝑓(𝑥𝑖+1)−2𝑓(𝑥𝑖)+𝑓(𝑥𝑖−1)

∆𝑥
 (24) 

Persamaan (24) bisa dipakai untuk menyatakan operator turunan kedua dalam bentuk matrik tridiagonal 

yaitu: 

 
𝑑2

𝑑𝑥2
≈

1

∆𝑥2

(

 
 

−2   1 0 0 ⋯
1 −2 1 0 ⋯
0 1 −2 1 ⋯
⋮ ⋱ ⋱ ⋱ ⋯
0 ⋯ ⋯ 1 −2)

 
 

 (25) 

2.3 Penyelesaian Persamaan Schrodinger Tidak Bergantung Waktu untuk Osilator Harmonik dengan 

metode Beda Hingga 

Untuk menyelesaikan TISE pada osilator harmonik (Persamaan 3) dapat dilakukan dengan metode numerik 

yaitu metode beda hingga. Langkah-langkah penyelesaian TISE yaitu: 

1) Menentukan (define) grid titik-titik xi, dimana i = 1, 2, …N. Jarak grid (grid spacing) adalah ∆𝑥, 

sehingga xi
 = xmin + 𝑖∆𝑥 

2) Turunan kedua ditentukan (approximated) dengan: 

  
𝜕2𝜓(𝑥)

𝜕𝑥2
≈
𝜓(𝑥𝑖+1)−2𝜓(𝑥𝑖)+𝜓(𝑥𝑖−1))

∆𝑥2
 (26) 

3) TISE dapat dinyatakan dengan matrik Hamiltonian yaitu: 

 𝐻𝜓(𝑥) ≈ 𝐸𝜓(𝑥) (27) 

Dimana matrik Hamiltonian H terdiri dari 2 bagian yaitu: energi kinetik dan energi potensial. Energi kinetik 

dinyatakan dengan turunan kedua (Persamaan 26). Sedangkan energi potensial ditentukan dengan 
1

2
𝑚𝜔2𝑥2. Sehingga elemen-elemen dari matrik H yaitu: 

 𝐻𝑖𝑖 =
ħ2

𝑚∆𝑥2
+
1

2
𝑚𝜔2𝑥𝑖

2 (28) 

serta  

 𝐻𝑖,𝑖+1 = 𝐻𝑖,𝑖−1 = −
ħ2

2𝑚∆𝑥2
 (29) 

Sedangkan semua elemen lain sama dengan nol. 

3. Metode Penelitian 

3.1 Perancangan diagram alir (flow chart) 

Gambar diagram alir dari metode beda hingga untuk penyelesaian TISE ditunjukkan pada Gambar 3. 
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Gambar 3. Diagram alir penyelesaian TISE dengan Finite Difference. 

3.2 Pengimplementasian kode program (source code) 

Langkah selanjutnya adalah pengimplementasian diagram alir ke dalam kode program. Bahasa 

pemrograman yang dipakai yaitu Python [11]. Komputer yang dipakai dalam penelitian ini yaitu laptop 

merk HP dengan spesifikasi:  prosesor intel core i7, memori RAM 16 GB dan GPU 8 GB. Potongan kode 

program Python dari penyelesaian TISE dengan finite difference dituliskan di bawah ini.  

#****Analytic Solution ****** 
def analytic_solution(m,omega,hbar,x): 
    # Define function for the wave function of the quantum harmonic oscillator 
    def psi_n(x, n, m, omega): 

        xi = cp.sqrt(m * omega / hbar) * x 
        Hn = eval_hermite(n, cp.asnumpy(xi))  # Convert to NumPy for scipy function 
        normalization = (m * omega / (cp.pi * hbar))**0.25 / cp.sqrt(2**n * np.math.factorial(n)) 
        psi = normalization * cp.array(Hn) * cp.exp(-xi**2 / 2) 
        return psi 
#*****Finite Difference Solution***** 
def finite_diff_solution(N):    
    kinetic = cp.zeros((N, N)) 
    for i in range(1, N-1): 
        kinetic[i, i] = -2.0 
        kinetic[i, i-1] = 1.0 
        kinetic[i, i+1] = 1.0 
    kinetic *= -hbar**2 / (2 * m * dx**2) 
    potential = cp.zeros((N, N)) 
    for i in range(N): 
        potential[i, i] = 0.5 * m * omega**2 * x[i]**2 
    H = kinetic + potential 
    energies, wavefunctions = eigh(cp.asnumpy(H))  # Convert to NumPy for scipy function 
    wavefunctions = cp.array(wavefunctions) 
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    normalized_wavefunctions = cp.zeros_like(wavefunctions) 
    for n in range(6): 
        norm = cp.sqrt(cp.sum(wavefunctions[:, n]**2) * dx) 
        normalized_wavefunctions[:, n] = wavefunctions[:, n] / norm 
    return normalized_wavefunctions 
#*****Plot Psi and |Psi|^2***** 
def plot_psi(psi_anal,psi_fin_diff): 
    … 
    for n in range(nmax): 
        … 
        plt.plot(x, psi_anal[n], 'b', linewidth='3.5',label='Analytic') 
        plt.plot(x, psi_fin_diff[:, n+1], '--r',linewidth='2.5',label='Fin.Difference') 
        plt.plot(x, psi_anal[n]**2, 'b', linewidth='3.5',label='Analytic') 
        plt.plot(x, psi_fin_diff[:, n+1]**2, '--r',linewidth='2.5',label='Fin.Difference') 
        … 
    return 
#*****Saving data into Excel***** 
def save_data(psi_anal,normalized_wavefunctions): 
    for n in range(nmax): 
         … 
        df1 = pd.DataFrame(psi_anal[n]**2,psi_fin_diff[:, n+1]**2)  #(y,x) 
        df1.to_excel(excel_writer =  "data_psi(x)_kuadrat"+str(n)+".xlsx",startrow=0, header=False) 
    return 
#********Main Program******* 
psi_anal=analytic_solution(m,omega,hbar,x) 

psi_fin_diff=finite_diff_solution(N) 

plot_psi(psi_anal,psi_fin_diff) 

save_data(psi_anal,psi_fin_diff) 

4. Hasil Dan Pembahasan   

4.1 Hasil 

Jika ditentukan massa partikel m = 9.1 10-31 kg, frekuensi anguler (ω) = 1.0 1016 Hz dan konstanta Plank 

tereduksi (ħ) = 1.05 10-34 Js dan jumlah grid (N) = 1000, maka hasil dari program Penyelesaian TISE 

dengan metode Finite Difference untuk n = 1, 2, …, 5, diperlihatkan pada Gambar 4 sampai 8. 

 

 Gambar 4. Penyelesaian TISE osilator harmonik untuk 𝜓1(𝑥) dan |𝜓1(𝑥)|
2. 

 

 Gambar 5. Penyelesaian TISE osilator harmonik untuk 𝜓2(𝑥) dan |𝜓2(𝑥)|
2. 
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 Gambar 6. Penyelesaian TISE osilator harmonik untuk 𝜓3(𝑥) dan |𝜓3(𝑥)|
2.  

 

 Gambar 7. Penyelesaian TISE osilator harmonik untuk 𝜓4(𝑥) dan |𝜓4(𝑥)|
2.  

 

 Gambar 8. Penyelesaian TISE osilator harmonik untuk 𝜓5(𝑥) dan |𝜓5(𝑥)|
2.  

Dari hasil run program TISE juga dihasilkan file excel untuk menyimpan data kerapatan kemungkinan 

 |𝜓𝑛(𝑥)|
2 dari n =1, 2, …5, baik penyelesaian secara analitik maupun finite difference. Kurva warna biru 

adalah penyelesaian analitik dan kurva garis putus-putus warna merah adalah penyelesaian metode finite 

difference. Data rapat kebolehjadian untuk n =1 ( |𝜓1(𝑥)|
2) diperlihatkan pada Tabel 1. 

Tabel 1. Data  |𝜓1(𝑥)|
2) analitik dan finite difference. 

i xi |ψ1(x)|2-analitik |ψ1(x)|2-finite difference 

1 -0,000000000500 2,044736435 0,015984255110 

2 -0,000000000499 2,229852586 0,000000051484 

3 -0,000000000498 2,431305553 0,015869611160 

4 -0,000000000497 2,650498131 0,063705953776 

⁝ ⁝ ⁝ ⁝ 

997 0,000000000497 2,650498131399 0,132607991082 

998 0,000000000498 2,431305552938 0,058762344457 

999 0,000000000499 2,229852586002 0,014664366644 

1000 0,000000000500 2,044736434960 0,000000000000 
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Dari data  |𝜓𝑛(𝑥)|
2 baik yang dihasilkan oleh metode analitik maupun finite difference selanjutnya 

dihitung regresi linear. Hasil regresi linear untuk   |𝜓1(𝑥)|
2 dan  |𝜓5(𝑥)|

2 bisa dilihat pada Gambar 9. 

                         

Gambar 9. Regresi linear |ψ1(x)|
2 dan |ψ5(x)|

2. 

Hasil uji z untuk |ψ𝑛(x)|
2 untuk n dari 1 sampai 5 diperlihatkan pada Gambar 10. 

 

Gambar 10. Hasil uji z untuk |ψ𝑛(x)|
2. 

4.2 Pembahasan 

Pada Gambar 4 sampai 8 terlihat bahwa kurva  ψ1(x) sampai  ψ5(x) hasil metode analitik (biru) dan 

metode finite difference (merah) semuanya berimpit. Demikian juga |ψ1(x)|
2 sampai |ψ5(x)|

2. Secara 

kualitatif, hal ini mengindikasikan hasil perhitungan dari kedua metode hampir sama. Secara kuantitatif, 

kesamaan hasil perhitungan metode finite difference dan analitik ini didukung oleh hasil regresi linear yang 

diperlihatkan Gambar 9, dimana nilai gradien (β1), intercept (β0) dan koefisien determinasi (R2) mendekati 

nilai ideal yaitu: 1, 0 dan 1, secara berurutan [12]. Persamaan umum garis regresi linear dinyatakan dengan 

y = β1x+ β0, dimana β1 adalah gradien dan β0 adalah koefisien regresi atau intercept [13]. Gambar 9 (kiri) 

memperlihatkan regresi linear untuk |ψ1(x)|
2 diperoleh nilai gradien = 1, intercept = 4180,5 dan R2 = 1. 

Sedangkan pada Gambar 9 (kanan) diperlihatkan hasil regresi linear |ψ5(x)|
2 yaitu nilai β1 = 1, β0 = 412015 

dan R2 = 1. Kesamaan hasil perhitungan dari kedua metode juga didukung oleh hasil uji z seperti 

diperlihatkan pada Gambar 10. Semua nilai z hitung terletak pada daerah yang diterima berwarna hijau 

(accepted area). Misal untuk n =1, nilai z hitung adalah 5,9 10-10 sedangkan nilai z kritis adalah 1,96 

(significance level (α = 0,05) atau tingkat kepercayaan = 95%). Oleh karena z hitung < z kritis maka dapat 

disimpulkan hasil perhitungan |ψ1(x)|
2 dengan metode analitik sama dengan hasil perhitungan metode 

finite difference, dengan tingkat kepercayaan 95 persen. Atau bisa dikatakan, 95 persen kita bisa yakin 

bahwa hasil perhitungan dari kedua metode adalah sama. 

5. Kesimpulan   

Metode finite difference bisa dipakai untuk mencari penyelesaian TISE untuk osilator harmonik. 

Penyelesaian TISE metode finite difference sangat mendekati metode analitik. Hal ini didukung oleh hasil 

regresi linear dan uji z. Untuk penelitian selanjutnya penulis menyarankan untuk membandingkan metode 

finite difference ini dengan metode analitik berbasis operator aljabar yaitu: anihilasi dan kreasi.  



 Penyelesaian Persamaan Schrodinger Takgayut Waktu untuk Osilator Harmonik   …….. 

(I Gusti Agung Widagda, dkk)  
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