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ABSTRACT

Food spoilage is still a global problem, contributing to foodborne illness, economic losses, and
environmental burdens associated with food waste. Conventional chemical preservatives, while
effective, face increasing regulatory restrictions and consumer concern regarding potential health
risks, driving demand for safer and more natural alternatives. Natural preservatives such as
essential oils, phenolic compounds, and antimicrobial peptides offer broad-spectrum
antimicrobial and antioxidant activities but are limited by poor water solubility, volatility,
degradation during processing, and inconsistent efficacy in complex food matrices. This
narrative review examines recent advances in water-soluble self-assembled nanomaterials as
stabilization and delivery systems for natural food preservatives. Emphasis is placed on
supramolecular self-assembly principles, key non-covalent interactions in aqueous
environments, common nanostructures including cyclodextrin inclusion complexes, polymer
micelles, nanoemulsions, hydrogels, and vesicles, as well as assembly and characterization
methods relevant to food applications. The review further discusses major food spoilage
mechanisms and bacterial pathogens, highlighting synergistic effects achieved by combining
nanomaterials with natural preservatives to enhance antimicrobial efficacy, prolong shelf life,
and reduce sensory impacts. While these systems demonstrate significant promise for clean-label
food preservation, challenges related to scalability, cost, sensory optimization, safety, migration,
and regulatory acceptance remain. Addressing these issues through green synthesis, mechanistic
studies, and robust safety assessments will be essential to support the responsible translation of
self-assembled nanomaterials into practical and sustainable food preservation strategies.

Keywords: food spoilage, water-soluble, self-assembly, nanomaterials, natural food
preservatives

INTISARI

Kerusakan pangan masih menjadi permasalahan global karena berdampak pada kesehatan
masyarakat melalui penyakit bawaan makanan, menimbulkan kerugian ekonomi, serta
meningkatkan beban lingkungan akibat limbah pangan. Pengawet kimia konvensional selama
ini banyak digunakan karena efektivitasnya, namun penerapannya semakin dibatasi oleh regulasi
dan kekhawatiran konsumen terhadap potensi risiko kesehatan. Hal ini mendorong
meningkatnya minat terhadap pengawet berbahan alami yang dinilai lebih aman. Pengawet
alami, seperti minyak esensial, senyawa fenolik, dan peptida antimikroba, memiliki aktivitas
antimikroba dan antioksidan yang luas. Namun, penggunaannya dalam sistem pangan masih
terkendala oleh kelarutan air yang rendah, sifat volatil, degradasi selama proses pengolahan, serta
efektivitas yang tidak selalu konsisten dalam matriks pangan yang kompleks. Tinjauan ini
membahas perkembangan terkini nanomaterial larut air yang tersusun secara spontan sebagai
sistem stabilisasi dan penghantaran pengawet pangan alami. Pembahasan mencakup prinsip
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perakitan supramolekul, interaksi non-kovalen utama dalam lingkungan berair, serta berbagai
nanostruktur yang umum digunakan, seperti kompleks inklusi siklodekstrin, misel polimer,
nanoemulsi, hidrogel, dan vesikel. Selain itu, diuraikan pula potensi efek sinergis antara
nanomaterial dan pengawet alami dalam meningkatkan efektivitas antimikroba, memperpanjang
umur simpan, dan mengurangi dampak sensori. Meskipun menjanjikan untuk pengawetan
pangan, penerapan teknologi ini masih menghadapi tantangan terkait skalabilitas, biaya,
keamanan, dan penerimaan regulasi, sehingga memerlukan pengembangan lebih lanjut sebelum
dapat diterapkan secara luas.

Kata Kunci.: kerusakan pangan, larut dalam air, perakitan spontan, nanomaterial, pengawet
makanan alami

INTRODUCTION
Global Challenge of Food Spoilage and Danger of Preservatives

Food spoilage remains a pervasive global challenge, with significant
implications for public health, food security, and economic sustainability.
Around 600 million people become sick and 420,000 die annually due to unsafe
food consumption, with children under five years old being more vulnerable
(World Health Organization, 2024). Foodborne diseases are among the most
common causes of sickness around the world. The burden is exacerbated by the
increasing prevalence of antibiotic-resistant pathogens and limitations in
traditional antimicrobial interventions (World Health Organization, 2023). The
Food and Agriculture Organization (FAO) estimates that 13% of food is lost
post-harvest and before retail, with an additional 19% wasted at retail and
consumer levels, representing a substantial economic and environmental cost of
food spoilage. Food loss and waste even generate 8-10% global greenhouse
gases (UN Climate Change, 2024).

To mitigate spoilage, the food industry has historically relied on chemical
preservatives such as benzoates, sorbates, and sulfites (Quansah & Kwesi Saalia,
2024). While these compounds are effective in extending shelf life and
preventing microbial growth, they are associated with consumer-perceived
health risks and regulatory scrutiny, particularly regarding allergenicity and
long-term exposure (Gyawali & Ibrahim, 2014). Consumer awareness of these
risks has driven demand for safer and more natural alternatives. Regulatory
agencies have responded by tightening permissible limits and encouraging the
development of “clean-label” products (Aschemann-Witzel et al., 2019).

Alternative Natural Preservatives and Their Instability

Natural preservatives, including essential oils (EOs), antimicrobial peptides
(AMPs), and phenolic compounds have emerged as potential alternatives due to
their broad antimicrobial and antioxidant activities (Ganosi et al., 2023;
Mohammed et al., 2025; Parada Fabian et al., 2025; Xu et al., 2025). Plant-
derived EOs such as clove, oregano, cinnamon, and thyme, as well as phenolics
like catechins and flavonoids, are recognized for their Generally Recognized as
Safe (GRAS) status and efficacy against foodborne pathogens (Bozik et al.,
2017; Khan et al., 2025). AMPs, including nisin and pediocin, are also widely
used in dairy and meat preservation (Parada Fabian et al., 2025).

Animal-derived natural preservatives also contribute to food preservation
and safety. Proteins and peptides such as lysozyme (from egg white), lactoferrin
and lactoperoxidase (from milk), and chitosan derived from crustacean shells
exhibit antimicrobial activity through cell wall hydrolysis, iron sequestration,
membrane destabilization, and inhibition of microbial metabolism. These
animal-derived preservatives are commonly applied in dairy products, seafood,
meat, and edible coatings (Lee & Paik, 2016).
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However, the practical application of these natural compounds is hampered
by several instability issues. EOs are highly volatile, hydrophobic, and prone to
degradation by light, heat, and oxygen which limits their direct incorporation
into food matrices (Ganosi et al., 2023; Khan et al., 2025). Phenolics, peptides,
and AMPs are prone to enzymatic degradation, poor water solubility, and rapid
loss of bioactivity during processing and storage (Adaro et al., 2023; Parada
Fabian et al., 2025; Xu et al.,, 2025). These limitations result in reduced
antimicrobial efficacy, inconsistent sensory properties, and challenges in
achieving controlled release and sustained activity (El Alami El Hassani et al.,
2025; Ganosi et al., 2023).

Emergence of Nanotechnology in Food Preservation

Nanotechnology has revolutionized food preservation by enabling the
design of nanomaterials with tailored physicochemical properties for enhanced
stability, bioavailability, and controlled release of bioactive compounds (Han et
al., 2025; Mahajan et al., 2025). Nanomaterials such as cyclodextrins, polymer
micelles, nanoemulsions, and lipid nanoparticles have demonstrated superior
encapsulation efficiency, protection against environmental stressors, and
improved antimicrobial performance compared to conventional methods (e.g.
direct addition) (Alloush & Demiralp, 2025; Sruthi, 2025; Han et al., 2025;
Mabhajan et al., 2025).

The integration of nanotechnology into food packaging and preservation
has led to the development of active and intelligent packaging systems capable
of inhibiting microbial growth and monitor food freshness and quality (Ahari &
Soufiani, 2021; Muthu et al., 2025). The food industry has increasingly explored
nanotechnology to enhance shelf life and safety of their products. For example,
silver nanoparticles (AgNPs) were combined into food packaging films to give
antimicrobial activity and thereby extend the shelf life of perishable foods like
fresh fruits, meat, and seafood (Pattnaik et al., 2024). Despite these advances,
concerns regarding cost-effectiveness, scalability, and safety persist,
necessitating further research and regulatory oversight (Mahajan et al., 2025;
Muthu et al., 2025; Pattnaik et al., 2024; Prakash & Sao Jos¢, 2026). FDA nano
guidance updated 2021, emphasizing phys-chem characterization (Food and
Drug Administration, 2022).

Potential Combination of Nanotechnology to Stabilize Natural
Preservatives

The synergistic combination of nanotechnology and natural preservatives
offers a promising strategy to overcome the instability and efficacy challenges
of bioactive compounds (Mahajan et al., 2025; McClements et al., 2021; Pattnaik
et al., 2024). Water-soluble self-assembled nanomaterials, such as cyclodextrin
inclusion complexes, polymer micelles, and nanoemulsions, provide protective
matrices that enhance solubility, shield against degradation, and enable
controlled release of essential oils (EOs), phenolics, and antimicrobial peptides
(AMPs) (Mahajan et al., 2025; McClements et al., 2021; Muthu et al., 2025). For
example, cyclodextrin-based encapsulation has improved the stability and
antimicrobial ability of EOs against pathogens like Staphylococcus aureus and
Escherichia coli (Alabrahim et al., 2025), while polymer micelles and
nanoemulsions have introduced the sustained release and enhanced
bioavailability of phenolic antioxidants and peptides. These approaches
successfully extend shelf life, minimize sensory alterations, reduce the required
dosage of preservatives (Alloush & Demiralp, 2025; McClements et al., 2021).
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This aligns well with consumer preferences for minimally processed and natural
foods (El Alami El Hassani et al., 2025; Muthu et al., 2025).

Rationale for Water-Soluble Self-Assembled Nanomaterials

Water-soluble self-assembled nanomaterials are particularly attractive for
food applications due to their biodegradability, biocompatibility, and ability to
form stable dispersions in aqueous environments (Mahajan et al., 2025; Muthu
et al., 2025). Cyclodextrins, for instance, possess hydrophilic exteriors and
hydrophobic cavities, enabling the encapsulation of hydrophobic essential oils
(EOs) and phenolics while maintaining water solubility (Cengiz et al., 2023).
Polymer micelles, formed from amphiphilic block copolymers, create core—shell
structures that protect and deliver bioactives in aqueous systems (Vaskan et al.,
2025). Meanwhile nanoemulsions offer enhanced stability, solubility, and
controlled release profiles for a variety of natural preservatives (McClements et
al., 2021).

These self-assembled systems leverage non-covalent interactions such as
hydrophobic forces, electrostatic interactions, hydrogen bonding, and n—n
stacking to achieve robust encapsulation and functional performance in complex
food matrices (Alloush & Demiralp, 2025; Buaksuntear et al., 2022). Their
modularity and tunability allow for customization to specific food applications,
addressing the diverse challenges of spoilage, sensory quality, and regulatory
compliance (El Alami El Hassani et al., 2025; Mahajan et al., 2025).

Objectives and Scope of this Narrative Review

This narrative literature review aims to synthesize recent advances in the
self-assembly of water-soluble nanomaterials for stabilizing natural food
preservatives. The review focuses on the principles of supramolecular self-
organization, driving forces in aqueous environments, common self-assembled
nanostructures, assembly methods, and characterization techniques. It further
explores the mechanisms of food spoilage, key bacterial pathogens, and synergy
between nanomaterials with natural preservatives.

FUNDAMENTALS OF WATER-SOLUBLE SELF-ASSEMBLY IN
NANOMATERIALS
Principles of Supramolecular Self-Organization

Supramolecular self-organization refers to the spontaneous assembly of
molecules into ordered structures through non-covalent interactions, resulting in
functional nanomaterials with tailored properties (Buaksuntear et al., 2022; Jarak
et al., 2024). In biological systems, self-assembly underpins the formation of cell
membranes, protein folding, and nucleic acid structures (Habibi et al., 2016).
Synthetic analogs, including amphiphilic polymers, peptides, and cyclodextrins,
mimic these processes to create nanostructures such as micelles, vesicles,
hydrogels, and inclusion complexes (Cengiz et al., 2023; McClements et al.,
2021).

The design of self-assembled systems relies on the careful selection of
building blocks with complementary functional groups and geometries. For
instance, amphiphilic molecules with distinct hydrophilic and hydrophobic
domains can organize into micelles or vesicles in aqueous environments, while
cyclic oligosaccharides like cyclodextrins form host—guest inclusion complexes
with hydrophobic bioactives (McClements et al., 2021; Vaskan et al., 2025).
Supramolecular capsules and cages, assembled via hydrogen bonding, metal
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coordination, or m—r stacking, offer encapsulation and stabilization of reactive
species (Bhattacharyya et al., 2025; Buaksuntear et al., 2022).

Recent advances in computational chemistry and molecular engineering
have enabled the rational design of supramolecular architectures with precise
control over size, shape, and functionality, facilitating their application in food
preservation, drug delivery, and biosensing (Borowko & Staszewski, 2024; Jarak
et al., 2024; Mahajan et al., 2025).

Driving Forces and Interactions in Aqueous Environments
The self-assembly of nanomaterials in water is governed by a complex
interplay of non-covalent interactions, including:

- Hydrophobic interactions: Drive the aggregation of nonpolar domains,
leading to micelle and bilayer formation. In water, hydrophobic collapse
is a key mechanism for the assembly of amphiphilic molecules and -
conjugated systems (Buaksuntear et al., 2022; Mahajan et al., 2025; Muthu
et al., 2025).

- Hydrogen bonding: Provides stability and directionality, enabling the
formation of hydrogels, capsules, and host—guest complexes (Buaksuntear
et al., 2022; Jain et al., 2022).

- Electrostatic interactions: Occur between charged groups, influencing
the assembly of polyelectrolytes, peptides, and cyclodextrin derivatives
(Buaksuntear et al., 2022; Jarak et al., 2024).

- 7—m stacking: Facilitates the organization of aromatic molecules, such as
porphyrins and phenolics, into ordered nanostructures with enhanced
photophysical properties (Bhattacharyya et al., 2025; Buaksuntear et al.,
2022).

- Van der Waals forces: Contribute to the overall stability of assemblies,
particularly in the formation of capsules and cages (Buaksuntear et al.,
2022).

Environmental factors such as pH, temperature, ionic strength, and solvent
composition modulate these interactions, enabling the dynamic tuning of
assembly pathways and morphologies (Buaksuntear et al., 2022; Muthu et al.,
2025; Vaskan et al., 2025). For example, the incorporation of hydrophilic side
chains into conjugated molecules enhances water solubility and enables kinetic
control over aggregation states (Bhattacharyya et al., 2025; Neu et al., 2025).

Common Self-Assembled Nanostructures for Bioactive Delivery

Common self-assembled nanostructures in water ranging from cyclodextrin
complexes and polymer micelles to nanoemulsions, hydrogels, liposomes, and
co-assembled systems, summarized in Table 1.

Table 1. Representative Self-Assembled Nanostructures for Bioactive Delivery

Nanostructure Building Blocks En?apsqlated Key Features Ref
Bioactives

(BenchChem Technical
Cyclodextrin o-, p-, vy-CD, EOs. phenolics Water-soluble, host- Support Team, 2025; Janik et
Complex derivatives P guest chemistry al.,, 2023; Nicolaescu et al.,

2025)
Polymer PEG-PCL, PEG- Hydrophobic drugs, Core-shell, controlled (Ansarinik et al., 2022; Luo et
Micelle PLA, etc. EOs release al., 2022)

. Oil, water, . Fine droplets, high (Joy et al., 2022; Movahedi et

Nanoemulsion surfactants EOs, phenolics stability al., 2024)
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Encapsulated

Nanostructure Building Blocks . R Key Features Ref
Bioactives
Hydrogel Proteins, peptides, Hydrophilic drugs, 3D network, stimuli- (Jain et al., 2022; Joy et al.,
polysaccharides cells responsive 2022)

Liposome/ Phospholipids, Hydrophilic/hydrop  Bilayer, dual (Janik et al., 2023; Joy et al.,
Niosome surfactants hobic drugs encapsulation 2022)

Complex
Peptide Self-  Antimicrobial Hvdrophobic d noncovalent (Gao et al., 2023; Ma et al.,
assembly peptides YArophobIc CIUes i teractions and 2024)

folding
Polyphenol- Polyphenol, metal Water soluble, (Li et al., 2025; Zhang et al
biopolymer ’ Phenolics ’ ? ’ ?

Co-assembly

ion, polysaccharide

antioxidant activity 2021)

The table shows that different nanostructures exploit distinct assembly

principles such as host—guest inclusion, core—shell micellization, droplet
stabilization, 3D hydrogel networks, bilayer vesicles, peptide folding, and
polyphenol co-assembly. Each structure tailored to encapsulate specific classes
of bioactives with unique release and stability advantages.

Cyclodextrin Inclusion Complexes: Cyclodextrins (CDs) are cyclic
oligosaccharides with hydrophilic exteriors and hydrophobic cavities,
enabling the encapsulation of hydrophobic guest molecules such as
essential oils and phenolics (BenchChem Technical Support Team, 2025;
Janik et al., 2023; Nicolaescu et al., 2025). Inclusion complex formation
stabilizes bioactives, improves solubility, photo- and thermostability, also
protect against degradation (Nicolaescu et al., 2025). Modified CDs, such
as hydroxypropyl-B-cyclodextrin (HPBCD) and sulfobutylether-§3-
cyclodextrin (SBE-B-CD), offer enhanced water solubility and safety
profiles, making them suitable for food and pharmaceutical applications
(BenchChem Technical Support Team, 2025; Patwekar Shailesh, 2025).
Polymer Micelles: Polymer micelles are formed from amphiphilic block
copolymers, creating core—shell structures with hydrophobic interiors for
encapsulating bioactives and hydrophilic exteriors for water solubility.
Examples include PEG-PLA and PEG-PCL micelles, which have
demonstrated high encapsulation efficiency and controlled release of
hydrophobic drugs and natural preservatives (Ansarinik et al., 2022; Luo
et al., 2022).

Nanoemulsions: Nanoemulsions are stable dispersions of oil and water
kinetically, with droplet sizes ranging from 10 to 1000 nm and stabilized
by surfactants and cosurfactants. They enable the solubilization and
sustained release of essential oils (EOs) and phenolics, enhancing
antimicrobial efficacy and shelf life in food matrices (Joy et al., 2022;
Movahedi et al., 2024).

Hydrogels and Vesicles: Hydrogels, formed via self-assembly of proteins,
peptides, and amphiphilic polymers, provide three-dimensional networks
for encapsulating hydrophilic molecules and cells (Jain et al., 2022).
Vesicles, including liposomes and niosomes, offer bilayer structures for
dual encapsulation of hydrophilic and hydrophobic bioactives (Janik et al.,
2023; Nicolaescu et al., 2025).

Peptide-based Self-assembly: Self-assembling antimicrobial peptides
(AMP), amphiphilic peptides, surfactant-like peptides have emerged as
promising food-compatible nanomaterials. AMP for example, achieves a
dynamic transformation from nanoparticles to nanofibers when bacteria
are present. Though not particularly in food, this system exhibits a broad
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spectrum antibacterial ability versus multidrug-resistant (MDR) gram-
positive negative bacteria (Gao et al., 2023; Ma et al., 2024).

- Polyphenol-biopolymer Co-assembly: Emerging self-assembled
nanomaterials leverage polyphenol-based scaffolds (e.g., tannic acid
coordination networks) to encapsulate separate cargos. For example,
curcumin has been encapsulated as the cargo within tannic acid—Fe**
polyphenol networks, where tannic acid functions as the structural
building block forming a supramolecular shell via metal coordination and
non-covalent interactions (with enhanced stability and controlled release).
Meanwhile, polyphenolic shell formed by tannic acid and pectin stabilizes
curcumin loaded micelles against degradation and improves delivery
profiles (Li et al., 2025; Zhang et al., 2021).

Assembly Methods

Self-assembly methods are broadly categorized into top-down and bottom-
up approaches. Top-down methods involve the mechanical breakdown of bulk
materials into nanoscale structures using techniques such as homogenization,
milling, and ultrasonication (Naman, 2023). These methods are advantageous
for their scalability but may lack precision in controlling particle morphology
and surface chemistry.

In contrast, bottom-up methods rely on the spontaneous organization of
molecules through chemical or biological processes, offering better control over
nanostructure formation (Biswas et al., 2012). Common bottom-up techniques
include:

- Coacervation: This process forms polymer-rich droplets (coacervates)
around bioactive molecules through electrostatic, hydrophobic, and
hydrogen-bonding interactions between biopolymers such as gelatin, gum
arabic, and chitosan. These droplets can be solidified by cooling, drying,
or cross-linking, resulting in stable nanoparticles or microcapsules that
protect and control the release of the encapsulated compound (Janik et al.,
2023).

- Nanoprecipitation: A polymer dissolved in a solvent precipitates upon
contact with an antisolvent in which the polymer is insoluble. This rapid
precipitation traps the bioactive molecule within polymeric nanoparticles,
typically in the 50—-500 nm range. The process is mild and does not require
high temperatures, making it suitable for thermolabile and hydrophobic
compounds such as essential oils and polyphenols (Janik et al., 2023).

- Spray Drying and Freeze Drying: These dehydration-based techniques
convert emulsions or suspensions into dry powders, facilitating handling,
storage, and industrial-scale production. Spray drying involves atomizing
a liquid into hot air to evaporate the solvent, while freeze drying removes
water through sublimation under low temperature and pressure, both
preserving the bioactive compound (Janik et al., 2023).

- Electrospinning and Electrospraying: These methods use high-voltage
electric fields to manipulate polymer solutions containing bioactives. In
electrospinning, a viscous polymer solution forms a continuous jet that
stretches into nanofibers as the solvent evaporates, producing high-
surface-area fibers ideal for controlled release. In electrospraying, a less
viscous solution breaks into droplets under the electric field, which solidify
into nanoparticles or microparticles. Both methods are suitable for heat-
sensitive compounds and allow precise control over particle size and
morphology (Janik et al., 2023).
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The selection of an encapsulation method is closely linked to the
physicochemical properties of the bioactive compound and its intended food
application. For example, essential oils and other hydrophobic phenolics are
frequently encapsulated by nanoprecipitation or coacervation. It efficiently
entraps nonpolar molecules within polymeric matrices while avoiding thermal
degradation. Heat-sensitive compounds, including volatile essential oils and
antimicrobial peptides, are better suited to electrospinning or electrospraying. It
enables nanoscale encapsulation and controlled release without exposure to high
temperatures. In contrast, spray drying and freeze drying are commonly applied
to emulsified phenolics, flavors, and antioxidants to produce stable powders for
large-scale food applications, with freeze drying preferred for thermolabile
compounds. These examples illustrate how matching compound properties with
appropriate encapsulation strategies is essential to maximize stability,
functionality, and practical applicability in food systems.

Characterization Techniques

Characterizing self-assembled nanomaterials involves evaluating their size,
morphology, surface charge, chemical composition, thermal behavior,
encapsulation efficiency, and release kinetics. All of which influence their
behavior in food matrices and biological systems.

Table 2. Key Characterization Techniques

Technique Purpose Reference
Measures hydrodynamic diameter and polydispersity
Dynamic Light Scattering (DLS) index to assess size distribution and colloidal (Jagadeesh et al., 2024)

stability.

Transmission/Scanning
Microscopy (TEM/SEM)

Electron Visualizes morphology, structure, and aggregation

of nanoparticles and nanofibers. (Jagadeesh et al., 2024)

Atomic Force Microscopy (AFM)

Provides surface topology and nanosheet thickness at

nanometer resolution. (Jagadeesh et al., 2024)

Zeta Potential Analysis

Evaluates surface charge, indicating electrostatic

stability and interaction potential. (Jagadeesh et al., 2024)

Fourier Transform
Spectroscopy (FTIR)

Infrared Identifies chemical bonds and molecular interactions

within nanostructures. (Jagadeesh et al., 2024)

X-ray Diffraction (XRD)

Assesses crystallinity and phase composition of

encapsulated systems. (Jagadeesh et al., 2024)

Encapsulation Efficiency & Loading Quantified via UV-Vis, HPLC, or mass spectrometry

Capacity

to determine bioactive entrapment. (Jagadeesh et al., 2024)

Release Kinetics

Evaluated using in vitro digestion models, dialysis, (Carmona-Almazan et al.,
or simulated food matrices to assess sustained 2024; Jagadeesh et al.,
release. 2024)

The characterization of nanoparticles and nanofibers involves
complementary techniques targeting size, morphology, surface properties,
chemical composition, structural order, and functional performance. DLS
quantifies particle size distribution and colloidal stability, while TEM/SEM and
AFM provide nanoscale visualization of shape, aggregation, and surface
topology. Zeta potential assesses electrostatic stability and interaction potential.
Chemical identity and interactions are probed by FTIR, whereas XRD evaluates
crystallinity and phase composition. Functional performance is measured
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through encapsulation efficiency, loading capacity, and release kinetics,
enabling evaluation of bioactive entrapment and controlled delivery.

UNDERSTANDING FOOD SPOILAGE AND ITS INHIBITION
Key Bacterial Pathogens in Food Spoilage

Food spoilage is primarily driven by the growth and metabolic activity of

bacterial pathogens, which vary according to food type, storage conditions, and
intrinsic properties.

Gram-Positive Pathogens

Staphylococcus aureus: S. aureus is a major cause of foodborne spoilage
and sickness. It produces heat-stable enterotoxins and forms biofilms that
resist cleaning and disinfection. It is prevalent in protein-rich foods such
as meat, dairy, and bakery products, with reported prevalence in some
ready-to-eat foods up to 23.2% (Mekhloufi et al., 2021; Parvin et al., 2023;
Sun et al., 2025).

Bacillus cereus: Known for its spore-forming ability and survival in
hostile environments, B. cereus contaminates dairy and processed foods,
causing spoilage and food poisoning (Zhou et al., 2024).

Listeria monocytogenes: Associated with dairy, meat, seafood, and ready-
to-eat products, L. monocytogenes is notable for its ability to grow at
refrigeration temperatures and cause severe illness, particularly in
vulnerable populations (Chu et al., 2025; EFSA Panel on Biological
Hazards (BIOHAZ), 2018).

Brochothrix thermosphacta: This spoilage bacterium affects meat and
seafood by producing off-flavors and odors. It thrives in vacuum-sealed
and modified atmosphere packaging, making it a concern for extended-
shelf-life products (Gribble et al., 2014; Wang et al., 2024).

Gram-Negative Pathogens
Pseudomonas spp: Pseudomonas species are the predominant spoilage
bacteria under aerobic conditions, especially in meat, dairy, and seafood.
P. fluorescens and P. aeruginosa secrete proteases and lipases, leading to
rancidity, off-odors, and slime formation. These bacteria are highly
adaptable, capable of biofilm formation and often exhibit antibiotic
resistance (Bloomfield et al., 2024; Mat Saad et al., 2025).
Escherichia coli: E. coli is a common contaminant in meat, dairy, and
fresh produce. While many strains are harmless, pathogenic variants such
as E. coli O157:H7 can cause serious foodborne illness. It also contributes
to spoilage through metabolic activity and toxin production (Kim & Song,
2023).
Salmonella spp: Salmonella is a major cause of foodborne illness and
spoilage in poultry and eggs. It is resilient to environmental stressors and
forms biofilms that enhance survival in food processing environments
(Mkangara, 2023).
Enterobacteriaceae: This diverse family of facultative anaerobes
includes spoilage organisms that affect a wide range of food production
facilities. Their presence often reflects poor hygiene during production and
transport (Altieri et al., 2025).
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General Mechanisms of Food Spoilage

Food spoilage results from a combination of microbial activity, enzymatic
reactions, chemical changes, and physical alterations that compromise food
safety, sensory quality, and shelf life. Spoilage indicators include increased
colony-forming units (CFU), increasing concentration of biogenic amines,
production of volatile organic compounds (VOCs), and sensory changes such as
off-odors, discoloration, and texture loss. General mechanism of food spoilage
is listed below:

- Microbial Activity: Bacteria, molds, and yeasts metabolize food
components, producing enzymes such as proteases, lipases, and amylases
that degrade proteins, lipids, and carbohydrates. These reactions generate
biogenic amines, free fatty acids, aldehydes, and exopolysaccharides,
leading to off-flavors, odors, slime formation, and textural degradation
(Janik et al., 2023; Mat Saad et al., 2025; Zhou et al., 2024).

- Biofilm Formation: Pathogens like Staphylococcus aureus and
Pseudomonas spp. form biofilms on food surfaces and processing
equipment, enhancing resistance to cleaning, disinfection, and
antimicrobial agents (Mat Saad et al., 2025; Parvin et al., 2023).

- Redox Reactions: Lipid oxidation and protein oxidation generate rancid
flavors, discoloration, and toxic byproducts. Lipid peroxidation and
Maillard reactions are key contributors to sensory deterioration and
nutrient loss (Geng et al., 2023; Khan et al., 2022).

- Enzymatic Browning: Polyphenol oxidase catalyzes the oxidation of
phenolic compounds in fruits and vegetables, leading to browning, flavor
changes, and reduced consumer appeal (Tilley et al., 2023).

Synergistic Approaches Combining Nanomaterials and Natural Food
Preservatives

The integration of self-assembled nanomaterials with natural preservatives
has demonstrated synergistic effects in inhibiting food spoilage and extending
shelf life (Mbonambi et al., 2025).

- Cyclodextrin-based Systems: Cyclodextrin inclusion complexes have
been used to encapsulate EOs and phenolics, enhancing their stability,
solubility, and antimicrobial activity (Alabrahim et al., 2024; Dai et al.,
2024). For example, HPBCD-encapsulated Boswellia sacra EO improved
antibacterial efficacy against S. aureus and E. coli, with Minimum
Inhibitory Concentration (MIC) values reduced by up to 4-fold compared
to free EO (Alabrahim et al., 2024). SBE-B-CD inclusion complexes with
quercetin achieved encapsulation efficiencies of 86% and enhanced
antioxidant and antimicrobial activity, with MIC against S. aureus at 21.25
mg/mL (Dai et al., 2024).

- Polymer Micelles and Nanoemulsions: Polymer micelles formed from
PEG-PLA and PEG-PCL have been used to encapsulate hydrophobic EOs
and drugs, providing controlled release and improved antimicrobial
performance (Ansarinik et al., 2022; Luo et al., 2022). Nanoemulsions of
lemongrass EO and chitosan nanoparticles extended the shelf life of fresh
strawberries up to 15 days and increased antioxidant capacity 1.2-2.6
times than pure EO. It also significantly improved antibacterial effects
compared to empty chitosan. The improvements observed at combined
state signal synergistic effects of EO and chitosan components (Do et al.,
2025).
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Chitosan-based Nanocomposites: Chitosan nanoparticles loaded with
nisin (an antimicrobial peptide) have demonstrated enhanced antimicrobial
activity against S. aureus and L. monocytogenes, reducing populations by
5- to 7-fold compared to free nisin (Phan et al., 2025). Chitosan/graphene
oxide composites delayed mango ripening by slowing ethylene synthesis
and minimized anthracnose incidence during storage (Vilvert et al., 2022).
Phenolic-loaded Nanoparticles: Phenolic compounds from Amazon
palm fruits encapsulated in acCGP/CS nanoparticles achieved 40%
encapsulation efficiency and increased antioxidant activity by 45-fold. The
MIC against S. aureus was reduced to 4.48 mg/mL (Ferreira et al., 2024).

CURRENT CHALLENGES AND DIRECTION

Despite significant progress, several challenges hinder the widespread

adoption of water-soluble self-assembled nanomaterials in food preservation.

Stability and Scalability: Achieving consistent size, morphology, and
encapsulation efficiency at industrial scale remains difficult. Batch-to-
batch variability and nanoparticle aggregation can compromise
performance and reproducibility. This challenge can be overcome by
implementing tightly controlled, continuous manufacturing processes
(e.g., microfluidics or in-line high-shear homogenization) combined with
real-time process monitoring and standardized formulation parameters to
minimize batch-to-batch variability and prevent nanoparticle aggregation
(Gorantla et al., 2020; Osouli-Bostanabad et al., 2022; Shen et al., 2024).
Cost and Complexity: Advanced self-assembly techniques often require
high-purity reagents, specialized equipment, and multistep synthesis,
which increase production costs and limit commercial viability for low-
margin food products. Future work should therefore emphasize cost-
conscious green synthesis strategies, such as the use of plant extracts,
microbial enzymes, or food-grade biopolymers. It can reduce reliance on
expensive solvents, lower energy input, simplify processing steps, and
enable integration with existing food-processing infrastructure (Herrera-
Rivera et al., 2024; Pattnaik et al., 2024).

Sensory Impact: Essential oils (EOs) and phenolic compounds possess
strong aromas and flavors that may alter the sensory profile of foods. This
necessitates careful formulation and the use of controlled-release systems
to minimize off-flavors while maintaining efficacy (Do et al., 2025).
Public perception of nanotechnology in food remains cautious. Reduction
of sensory impact will help to reduce resistance to adoption. Transparent
communication about benefits, risks, and regulatory safeguards is essential
to build trust. Educational campaigns, labeling initiatives, and stakeholder
engagement can foster informed decision-making and broader acceptance
(Aschemann-Witzel et al., 2019; EFSA Panel on Biological Hazards
(BIOHAZ), 2018; Pattnaik et al., 2024).

Migration and Toxicity: Nanomaterials may migrate from packaging into
food, raising concerns about human exposure, bioaccumulation, and long-
term health effects. Migration is influenced by nanoparticle size, surface
chemistry, food composition, and storage conditions (Pattnaik et al., 2024;
Singh et al., 2017). In response, high-throughput screening approaches,
together with functional genomics and metabolomics, are emerging as
powerful tools for evaluating nanomaterial safety and performance. These
techniques enable the identification of toxicity biomarkers, elucidation of
metabolic pathways, and assessment of encapsulated bioactive stability

203



JURNAL BIOLOGI UDAYANA 29(2): 193-208 P ISSN: 1410-5292  E ISSN: 2599-2856

under realistic food storage conditions (Singh et al., 2017; Wang et al.,
2025).

- Mechanistic Understanding: The antimicrobial mechanisms of
nanomaterial-bioactive systems are not fully elucidated. Additionally,
interactions with complex food matrices may attenuate their efficacy,
highlighting the need for more mechanistic and in situ studies (Muthu et
al., 2025; Wang et al., 2017). Studies using in situ imaging and molecular
modeling are needed to unravel these mechanisms and optimize
nanocarrier design.

CONCLUSIONS

This narrative review highlights the strong potential of water-soluble self-
assembled nanomaterials as enabling technologies to stabilize natural food
preservatives and address the persistent global challenge of food spoilage. By
leveraging supramolecular self-assembly driven by non-covalent interactions in
aqueous environments, nanostructures such as cyclodextrin inclusion
complexes, polymer micelles, nanoemulsions, hydrogels, and vesicles
effectively enhance the solubility, stability, and controlled release of essential
oils, phenolics, and antimicrobial peptides. The reviewed evidence demonstrates
that these systems can significantly improve antimicrobial and antioxidant
efficacy against key spoilage and pathogenic microorganisms, reduce required
preservative dosages, and mitigate undesirable sensory impacts, thereby aligning
with clean-label trends and consumer demand for safer, natural food products.
Despite these advantages, critical challenges remain, including scalability, cost-
effectiveness, sensory optimization, regulatory acceptance, and comprehensive
safety assessment related to migration and long-term exposure. While in vitro
and food-matrix studies are encouraging, in vivo animal validation is
increasingly necessary to bridge the gap between laboratory performance and
real-world safety. Addressing these limitations will require interdisciplinary
efforts integrating green synthesis, advanced characterization, mechanistic
studies, and high-throughput toxicological evaluation under realistic food
conditions. Overall, water-soluble self-assembled nanomaterials represent a
promising and versatile platform for next-generation food preservation, with the
potential to improve food safety, extend shelf life, and reduce food waste when
supported by robust scientific validation and responsible regulatory frameworks.
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