ISOLASI DAN IDENTIFIKASI SENYAWA GOLONGAN FLAVONOID YANG MEMILIKI AKTIVITAS ANTIBAKTERI PADA DAUN GAHARU (Gyrinops versteegii)

Authors

  • I M. O. A. Parwata Universitas Udayana
  • I M. B. Pratama Universitas Udayana
  • N. M. Suaniti Universitas Udayana

DOI:

https://doi.org/10.24843/JCHEM.2026.v20.i01.p04

Abstract

       Gyrinops versteegii is an endemic plant in Indonesia known to contain flavonoid compounds with potential as natural antibacterial agents, but scientific data on the isolation and characterization of active flavonoids from agarwood leaves remain limited. This study aims to evaluate the antibacterial activity of agarwood leaf extract against Staphylococcus aureus and Escherichia coli, as well as to identify the flavonoid types in the most active fraction. Agarwood leaves are extracted by multi-stage maceration with solvents of n-hexane, chloroform, ethyl acetate, and methanol, and then tested for antibacterial activity by the disc diffusion method. The total flavonoid levels were determined spectrophotometrically, while the separation of the compounds was performed by column chromatography, and the characterization of the isolate was performed by UV-Vis and FTIR spectrophotometers. Ethyl acetate extract had the highest flavonoid levels (186.976 mg QE/g) and exhibited the largest inhibition zone against S. aureus (19 mm) and E. coli (13 mm). The fractionation results in five fractions (A–E), with the D fraction being the most active. UV-Vis identification showed two absorption bands at λ 315.60 nm and λ 286.00 nm, indicating a dihydroflavonol group; while the shear reaction showed the -OH group on C-3, C-6, and C-7, and the FTIR confirmed the presence of the -OH group, C=O, C-O-C, C=C aromatic, and C-O alcohol. Isolates from fraction D showed very strong antibacterial activity with an inhibition zone of 33.82 mm against S. aureus and 23.22 mm against E. coli. These results show that flavonols from agarwood leaves have the potential to be natural antibacterial candidates, so they need to be further developed through toxicity tests and the mechanism of action of their active compounds as the basis for the development of phytopharmaceutical products.

Keywords: Gyrinops versteegii; flavonol; antibacterial; disc diffusion; UV-Vis; FTIR

 

Abstrak

         Gyrinops versteegii merupakan tanaman endemik Indonesia yang diketahui mengandung senyawa flavonoid dengan potensi sebagai agen antibakterial alami, namun data ilmiah terkait isolasi dan karakterisasi flavonoid aktif dari daun gaharu masih terbatas. Penelitian ini bertujuan untuk mengevaluasi aktivitas antibakterial ekstrak daun gaharu terhadap Staphylococcus aureus dan Escherichia coli, serta mengidentifikasi jenis flavonoid dari fraksi yang paling aktif. Daun gaharu diekstraksi secara maserasi bertingkat dengan pelarut n-heksana, kloroform, etil asetat, dan metanol; kemudian diuji aktivitas antibakterinya dengan metode difusi cakram. Kadar total flavonoid ditentukan secara spektrofotometri, sedangkan pemisahan senyawa dilakukan dengan kromatografi kolom dan karakterisasi isolat dilakukan dengan spektrofotometer UV-Vis dan FTIR. Ekstrak etil asetat memiliki kadar flavonoid tertinggi (186,976 mg QE/g) serta menunjukkan zona hambat terbesar terhadap S. aureus (19 mm) dan E. coli (13 mm). Fraksinasi menghasilkan lima fraksi (A–E), dengan fraksi D sebagai yang paling aktif. Identifikasi UV-Vis menunjukkan dua pita serapan pada λ 315,60 nm dan λ 286,00 nm yang mengindikasikan golongan dihidroflavonol; sementara reaksi geser menunjukkan adanya gugus -OH pada C-3, C-6, dan C-7, dan FTIR mengkonfirmasi adanya gugus -OH, C=O, C-O-C, C=C aromatik, dan C-O alkohol. Isolat dari fraksi D menunjukkan aktivitas antibakteri sangat kuat dengan zona hambat 33,82 mm terhadap S. aureus dan 23,22 mm terhadap E. coli. Hasil ini menunjukkan bahwa flavonol dari daun gaharu berpotensi sebagai kandidat antibakterial alami, sehingga perlu dikembangkan lebih lanjut melalui uji toksisitas dan mekanisme kerja senyawa aktifnya sebagai dasar pengembangan produk fitofarmaka.

Kata kunci: Gyrinops versteegii; flavonol; antibakteri; difusi cakram; UV-Vis; FTIR

Author Biographies

I M. O. A. Parwata, Universitas Udayana

Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Udayana

Jalan Kampus Unud-Jimbaran, Jimbaran-Bali, Indonesia

I M. B. Pratama, Universitas Udayana

Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Udayana

Jalan Kampus Unud-Jimbaran, Jimbaran-Bali, Indonesia

N. M. Suaniti, Universitas Udayana

Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Udayana

Jalan Kampus Unud-Jimbaran, Jimbaran-Bali, Indonesia

References

Akbulut, H. F. 2025. In vitro Antioxidant and Antibacterial Activities, Bioactive Compounds, Organic Acids, Sugars, Micro- and Macro-elements of Aquilaria agallocha Root Organic Extracts. Journal of Oleo Science, 74(1): 79-88. https://doi.org/10.5650/jos.ess24228

Alavi, M., & Karimi, N. 2018. Characterization, antibacterial, total antioxidant, scavenging, reducing power, and ion chelating activities of green synthesized silver, copper, and titanium dioxide nanoparticles using Artemisia haussknechtii leaf extract. Artificial Cells, Nanomedicine and Biotechnology, 46(8): 2066–2081. https://doi.org/10.1080/21691401.2017.1408121

Ali, A., Wu, H., Ponnampalam, E. N., Cottrell, J. J., Dunshea, F. R., & Suleria, H. A. R. 2021. Comprehensive profiling of the most widely used spices for their phenolic compounds through lc-esi-qtof-ms2 and their antioxidant potential. Antioxidants, 10(5): 721. https://doi.org/10.3390/antiox10050721

Andhika, U. A., Fitriana, & I. A. 2024. Uji Aktivitas Antibakteri Ekstrak Etanol Daun Gaharu (Aquilaria malaccensis) Dengan Menggunakan Metode KLT-Bioautografi. Makassar Pharmaceutical Science Journal, 1(31): 281–294. https://journal.farmasi.umi.ac.id/index.php/mpsj

Aqmarina Nasution, A., Siregar, U. J., Miftahudin, & Turjaman, M. 2020. Identification of chemical compounds in agarwood-producing species Aquilaria malaccensis and Gyrinops versteegii. Journal of Forestry Research, 31(4): 1371–1380. https://doi.org/10.1007/s11676-018-00875-9

Batubara, R., Hanum, T. I., Affandi, O., Julianti, E., & Ulfa, M. 2022. The antioxidant activities and chemical compounds of Aquilaria crassna, Aquilaria microcarpa, and Gyrinops versteegii leaves growing in Langkat, North Sumatra, Indonesia. Biodiversitas, 23(12): 6619–6628. https://doi.org/10.13057/biodiv/d231260

Batubara, R., Wirjosentono, B., Siregar, A. H., Harahap, U., & Tamrin. 2021. Bioactive compounds of ethanol extract from agarwood leaves (Aquilaria malaccensis) and antimicrobial activity against bacteria and fungi growing on the skin. Biodiversitas, 22(5): 2884–2890. https://doi.org/10.13057/biodiv/d220553

Bergšpica, I., Kaprou, G., Alexa, E. A., Prieto, M., & Alvarez-Ordóñez, A. 2020. Extended-spectrum β-lactamase (ESBL) producing Escherichia coli in pigs and pork meat in the European Union. Antibiotics, 9(10): 1–23. https://doi.org/10.3390/antibiotics9100678

Dechayont, B., Phuaklee, P., Chunthorng-Orn, J., Juckmeta, T., Prajuabjinda, O., & Jiraratsatit, K. 2021. Antibacterial, anti-inflammatory, and antioxidant activities of Mahanintangtong and its constituent herbs, a formula used in Thai traditional medicine for treating pharyngitis. BMC Complementary Medicine and Therapies, 21(1): 1–12. https://doi.org/10.1186/s12906-021-03274-6

Dong, W. H., Wang, H., Guo, F. J., Mei, W. L., Chen, H. Q., Kong, F. D., Li, W., Zhou, K. B., & Dai, H. F. 2019. Three new 2-(2-phenylethyl)chromone derivatives of agarwood originated from Gyrinops salicifolia. Molecules, 24(3): 1–7. https://doi.org/10.3390/molecules24030576

Hendra, H., Moeljopawiro, S., & Nuringtyas, T. R. 2016. Antioxidant and antibacterial activities of agarwood (Aquilaria malaccensis Lamk.) leaves. AIP Conference Proceedings, 1755(July 2016): 140004. https://doi.org/10.1063/1.4958565

Hidayat, A., Turjaman, M., Qamyari, R., Imanuddin, R., Tohir, D., Rahmanto, R. G. H., & Susilowati, A. 2021. Bioactive composition, antifungal, antioxidant, and anticancer potential of agarwood essential oil from decaying logs (Gyrinops spp.) of Papua Island (Indonesia). Journal of Applied Pharmaceutical Science, 11(9): 070–078. https://doi.org/10.7324/JAPS.2021.1101010

Hidayati, E., Handayani, Y., & Sudarma, I. M. 2022. Antibacterial Activity of Gyrinops versteegii Fruit Extracts against Staphylococcus aureus and Escherichia coli and GC-MS Analysis. Journal of Mathematical and Fundamental Sciences, 54(2): 249–260. https://doi.org/10.5614/j.math.fund.sci.2022.54.2.3

Ismail, H. F., Hashim, Z., Soon, W. T., Rahman, N. S. A., Zainudin, A. N., & Majid, F. A. A. 2017. Comparative study of herbal plants on the phenolic and flavonoid content, antioxidant activities, and toxicity on cells and zebrafish embryos. Journal of Traditional and Complementary Medicine, 7(4): 452–465. https://doi.org/10.1016/j.jtcme.2016.12.006

Mahmud, Z. H., Kabir, M. H., Ali, S., Moniruzzaman, M., Imran, K. M., Nafiz, T. N., Islam, M. S., Hussain, A., Hakim, S. A. I., Worth, M., Ahmed, D., Johnston, D., & Ahmed, N. 2020. Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Drinking Water Samples From a Forcibly Displaced, Densely Populated Community Setting in Bangladesh. Frontiers in Public Health, 8(June): 1–14. https://doi.org/10.3389/fpubh.2020.00228

Masoumian, M., & Zandi, M. 2017. Antimicrobial Activity of Some Medicinal Plant Extracts against Multidrug-Resistant Bacteria. Zahedan Journal of Research in Medical Sciences, 19(11): e10080 ref. 43. https://doi.org/10.5812/zjrms.10080

Nguyen, T.L.A., & Bhattacharya, D. 2022. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules, 27(8): 2494. https://doi.org/10.3390/molecules27082494

Parwata, A., Laksmiwati, Sudiarta, Dina, M. N., & Yasa, S. 2018. The contents of phenol and flavonoid compounds in the water extract of Gyrinops versteegii leaves have potential as natural antioxidants and hypoglycemic in hyperglycemic Wistar rats. Biomedical and Pharmacology Journal, 11(3): 1543–1552. https://doi.org/10.13005/bpj/1521

Sembiring, E. N., Elya, B., & Sauriasari, R. 2018. Phytochemical screening, total flavonoid and total phenolic content and antioxidant activity of different parts of Caesalpinia bonduc (L.) Roxb. Pharmacognosy Journal, 10(1): 123–127. https://doi.org/10.5530/pj.2018.1.22

Song, M., Liu, Y., Li, T., Liu, X., Hao, Z., Ding, S., Panichayupakaranant, P., Zhu, K., & Shen, J. 2021. Plant Natural Flavonoids Against Multidrug-Resistant Pathogens. Advanced Science, 8(15): 1–11. https://doi.org/10.1002/advs.202100749

Sy. Pakaya, M., Mustapa, M. A., & Ali, M. R. 2021. Uji Potensi Antibakteri Ekstrak Batang Gaharu (Gyrinops versteegii) Terhadap Bakteri Escherichia coli dan Staphylococcus aureus. Indonesian Journal of Pharmaceutical Education, 1(3): 262–274. https://doi.org/10.37311/ijpe.v1i3.11417

Wang, M. R., Li, W., Luo, S., Zhao, X., Ma, C. H., & Liu, S. X. 2018. GC-MS study of the chemical components of different Aquilaria sinensis (Lour.) Gilgorgans and agarwood from different asian countries. Molecules, 23(9): 2168. https://doi.org/10.3390/molecules23092168

Wang, S., Yu, Z., Wang, C., Wu, C., Guo, P., & Wei, J. 2018. Chemical constituents and pharmacological activity of agarwood and Aquilaria plants. Molecules, 23(2): -. https://doi.org/10.3390/molecules23020342

Xu, Y., Burton, S., Kim, C., & Sismour, E. 2016. Phenolic compounds, antioxidant, and antibacterial properties of pomace extracts from four Virginia-grown grape varieties. Food Science and Nutrition, 4(1): 125–133. https://doi.org/10.1002/fsn3.264

Zakaria, F., Talip, B. A., Kahar, E. E. M., Muhammad, N., Abdullah, N., & Basri, H. 2020. Solvent used in the extraction process of agarwood: A systematic review. Food Research, 4(3): 731–737. https://doi.org/10.26656/fr.2017.4(3).333

Downloads

Published

2026-01-31

How to Cite

Parwata, I. M. O. A., Pratama, I. M. B., & Suaniti, N. M. (2026). ISOLASI DAN IDENTIFIKASI SENYAWA GOLONGAN FLAVONOID YANG MEMILIKI AKTIVITAS ANTIBAKTERI PADA DAUN GAHARU (Gyrinops versteegii). Jurnal Kimia (Journal of Chemistry), 20(1), 27–34. https://doi.org/10.24843/JCHEM.2026.v20.i01.p04

Issue

Section

Articles