KINETICS ADSORPTION OF Fe(II) IONS USING CELLULOSE ACETATE FROM NIPAH FRONDS (Nypa Fruticans)
DOI:
https://doi.org/10.24843/JCHEM.2026.v20.i01.p07Abstract
Adsorbents are solid substances that have the ability to adsorb certain components from the fluid phase. The problem of heavy metal pollution, such as iron (Fe(II)), in water is increasing due to industrial and domestic activities, which can reduce environmental quality and endanger human health. Therefore, effective, environmentally friendly, and easily obtainable adsorbents are needed to address this problem. One potential source is nipah palm fronds (Nypa fruticans), which contain high amounts of cellulose and have not been optimally utilized. This study aims to determine the characteristics of cellulose and cellulose acetate from Nipah palm fronds and the ability of cellulose acetate to adsorb Fe(II) ions. The stages in the production of cellulose acetate include the isolation of cellulose from nipah palm fronds (Nypa Fructicans), the synthesis of cellulose acetate, the determination of the acetyl content and degree of substitution, and analysis using FTIR and AAS. The results obtained from cellulose show the presence of O–H, C–H, and C–O groups, while for cellulose acetate from nipah palm fronds, there are C=O, C–O–C, and C–O groups. The adsorption method was used to bind the adsorbate at the optimum mass and contact time. The Fe metal adsorption capacity was obtained at an optimum mass of 0.06 g, with an adsorption efficiency of 52.34%. The optimum contact time was 90 minutes with an adsorption efficiency of 43%. The adsorption kinetics followed second-order adsorption kinetics with a rate constant of 7.7 x 10–3 and a regression coefficient of R2 = 0.9998.
Keywords: Nipah palm fronds, cellulose acetate, kinetic adsorption, Fe(II) ions
Abstrak
Adsorben adalah zat padat yang memiliki kemampuan menyerap komponen tertentu dari fase fluida. Permasalahan pencemaran logam berat seperti besi (Fe(II)) dalam air semakin meningkat akibat aktivitas industri dan domestik, yang dapat menurunkan kualitas lingkungan serta membahayakan kesehatan manusia. Oleh karena itu, diperlukan bahan adsorben yang efektif, ramah lingkungan, dan mudah diperoleh untuk mengatasi masalah tersebut. Salah satu sumber potensial adalah pelepah nipah (Nypa fruticans), yang mengandung selulosa dalam jumlah tinggi dan selama ini belum dimanfaatkan secara optimal. Penelitian ini bertujuan untuk mengetahui karakteristik selulosa dan selulosa asetat pelepah nipah serta kemampuan selulosa asetat dalam menyerap ion Fe(II). Tahapan dalam pembuatan selulosa asetat meliputi isolasi selulosa pelepah nipah (Nypa Fruticans), sintesis selulosa asetat, penentuan kadar asetil dan derajat substitusi, analisis menggunakan FTIR dan AAS. Hasil yang diperoleh dari selulosa yaitu terdapat gugus O–H, C–H dan C–O sedangkan untuk selulosa asetat dari pelepah nipah adanya gugus C=O, C–O–C dan C–O. Metode adsorpsi digunakan untuk mengikat adsorbat pada massa dan waktu kontak optimum. Kapasitas serapan logam Fe diperoleh pada massa optimum 0,06 g, efisiensi serapan 52,34%. Waktu kontak optimum pada 90 menit dengan efisiensi penyerapan sebesar 43%. Kinetika adsorpsi mengikuti kinetika adsorpsi orde dua dengan konstanta laju sebesar 7,7 x 10–3 dan koefisien regresi R2 = 0, 9998.
Kata kunci: Pelepah nipah, selulosa asetat, kinetika adsorpsi, ion Fe(II)
References
Adityo Sawong Seto, A. M. S. 2013. Manufacturing Cellulosa Acetate from Nata De Soya Based. Konversi, 2(2): 1 - 12.
Ali Aldalbahi, Mehrez El-Naggar, Tawfik Khattab, Meram Abdelrahman, Mostafizur Rahaman, Abdulaziz Alrehaili, Mohamed El-Newehy. 2020. ‘Development of Green and Sustainable Cellulose Acetate/Graphene Oxide Nanocomposite Films as Efficient Adsorbents for Wastewater Treatment’, Polymers, 12(11): 1–16.
Apriania, Rina; Rohmana, Taufiqur; Mustikasaria, K. 2017. Synthesis and Characterization of Cellulose Acetate Membranes from Oil Palm Empty Fruit Bunches. Jurnal Riset Industri Hasil Hutan, 9: 91–98.
Damanik, E.Y., Batubara, R. and Hakim, L. 2024. ‘Anatomical characteristic and fiber morphology of fibrovascular bundle of Indonesian nipa (Nypa fruticans) frond’, Global Forest Journal, 02(02): 119–132.
Fensia Analda Souhoka, J. L. 2018. Synthesis and Characterization of Cellulose Acetate (CA). Indo. J. Chem. Res, 5(2): 58–62.
Huang, J. et al. 2021. ‘GhMYB7 promotes secondary wall cellulose deposition in cotton fibres by regulating GhCesA gene expression through three distinct cis-elements’, New Phytologist, 232: 1718–1737.
Available at:
https://doi.org/10.1111/nph.17612.
Kuki, H. et al. 2020. ‘Xyloglucan Is Not Essential for the Formation and Integrity of the Cellulose Network in the Primary Cell Wall Regenerated from Arabidopsis Protoplasts’, Plants, 9(5): 1–14.
Kulić, G. and Radojičić, V.B. 2011. ‘Analysis of Cellulose Content In Stalks and Leaves Of Large Leaf Tobacco’, Journal of Agricultural Sciences, 56(3): 207–215.
Available at:
https://doi.org/10.2298/JAS1103207K.
Mabee, W.E. and Saddler, J.N. 2010. ‘Bioresource Technology Bioethanol from lignocellulosics: Status and perspectives in Canada’, Bioresource Technology, 101(13): 4806–4813.
Available at:
https://doi.org/10.1016/j.biortech.2009.10.098.
Novianty, I., Erma, Asri Saleh, R. G. 2024. Kinetics Adsorption of Fe Metal using Cellulose Acetate from Palm Fronds (Borassus Flabellifer). Al-Kimia, 12(1): -.
https://doi.org/https://doi.org/10.24252/al-kimia.v12i1.45761
Ischak, Netty Ino; Fazriani, D. and B. D. N. 2021. Extraction and Characterization of Cellulose from Peanut Shell Waste (Arachys hypogaea L.) As an Iron Metal Ion Adsorbent. Jamb.J.Chem, 3(1): 27–36.
Manik, Trivena Myta Br, Dwi Sapri Ramadhan, Putri Faradilla, Siti Rahmah, Rini Selly, Jasmidi, Moondra Zubir. 2025. ‘Kinetics and Equilibrium Properties of Cu(II) Adsorption Using Modified Activated Carbon from Empty Oil Palm Fruit Bunches’, IJCST-UNIMED, 08(2): 242–247.
Masturoh, F., Hasanah, N., and Wahyusi, K. N. 2025. Synthesis and Characterization of Cellulose Acetate Derived from Corn Stalk CelluloseUsing FTIR Analysis. G-Tech : Jurnal Teknologi Terapan, 9(2): -.
Mayangsari, N. E., & Setiawan, A. 2016. Utilization of Used Paper Waste for Production of Biodegradable Cellulose Acetate. Vol 1 No 1 (2016): Seminar Master Maritime Safety and Environmental.
Patricia Lucky Yoseva, Akmal Muchtar, H. S. 2015. Utilization of sugarcane bagasse waste as an adsorbent to improve the quality of peatlands. JOM FMIPA, 2(1): -.
Rasha M. Sheltami, Ibrahim Abdullah, Ishak Ahmad, Alain Dufresne, H. K. 2012. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers, 88(2): -.
Riki Irwandi, Silvia Reni Yenti, C. 2015. Determination of Mass and Optimum Contact Time for Activated Carbon Adsorption from Sugarcane Bagasse as an Adsorbent for the Heavy Metal Pb. JOM FTEKNIK, 2(2): -.
Sari, D. E. (n.d.). The use of Cassava Peel Waste as a Narutal Adsorbent to Reduce The Levels of Iron (Fe) in Waste Water with a Batch System. UIN Sunan Ampel Surabaya.
Truong, T.T.C., Duong, N.T.T. and Bui, H.M. 2023. ‘Fabrication And Characterization of Sugarcane Bagasse Based Cellulose Acetate/Zeolite (Ca/Ze) Material for Elimination of Pb And Cu Ions from Aqueous Solutions’, Cellulose Chem. Technol., 57: 1149–1159.
Vina Amalia, Tety Sudiarti, Rafa Mufidah, Yuliarty, Y. N., and Rohmatullo, A. Y. 2024. Characteristics of Cellulose Acetate Composite Membranes (CA/CS, CA/PVA, CA/PEG) as Cu(II) Metal Ion Filtration Membrans. Al Kimiya: Jurnal Ilmu Kimia Dan Terapan, 11(1): -.
Waweru, N.M., Yang, J. and Bolokonya, H.C. 2019. ‘Enhanced Removal of Phosphates by the Adsorbent Consisting of Iron Oxide Loaded on Porous Chitosan/Cellulose Acetate Particle’, Engineering, 11(7): 366–394.
Available at:

