

COMPUTATIONAL DRUG DISCOVERY OF POTENT ANTIMALARIAL XANTHONES: A SYSTEMATIC REVIEW AND ADMET-GUIDED IDENTIFICATION OF A LEAD CANDIDATE

Joanne Theophilia Winata¹, Komang Dian Aditya Putra¹, Yosi Bayu Murti², Akhmad Kharis Nugroho^{3*}

¹Master in Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada, Jl. Sekip Utara, Sleman, Yogyakarta 55281, Indonesia

²Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia

³Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia

Corresponding author email: a.k.nugroho@ugm.ac.id

ABSTRACT

Background: Artemisinin resistance mediated by Kelch13 mutations threatens malaria elimination efforts. Xanthones from Garcinia mangostana present a promising alternative scaffold for antimalarial drug development. **Objective:** This study systematically identified potent xanthones reported in the literature and evaluated their pharmacological potential using computational methods. **Methods:** A comprehensive systematic review was conducted across PubMed, Scopus, and Wiley Online Library (through September 2025) following PRISMA 2020 guidelines, searching for "Xanthone" combined with "Antimalarial" or "Plasmodium". Selection criteria included original research reporting IC₅₀ values against Plasmodium falciparum. **Results:** Among 165 identified compounds from 46 studies, 18 demonstrated potent activity (IC₅₀ < 1 μ M). Structure-Activity Relationship analysis revealed that synthetic xanthones with alkylamino side chains were substantially more efficacious than natural isolates. Compound 117 (3-(3-(dimethylamino)propoxy)-6,8-dihydroxy-2-methoxy-7-(3-methylbut-2-en-1-yl)-9H-xanthen-9-one) emerged as the lead candidate with IC₅₀ of 0.1 μ M. In silico ADMET profiling predicted superior intestinal absorption (>90%), compliance with Lipinski's Rule, and a favourable-toxicity profile (non-mutagenic, non-hepatotoxic) compared to the natural prototype α -mangostin. **Conclusion:** This integrated systematic review-cheminformatics approach, strengthened by transparent multi-criteria prioritization, identified Compound 117 as a promising pre-clinical candidate requiring further biological evaluation, including in vivo efficacy in rodent malaria models, in vitro cytotoxicity profiling, and experimental validation of predicted CYP interactions before advancing toward clinical translation.

Keywords: ADMET; Antimalarial; Lipinski's Rule of Five; Systematic Review; Xanthone

INTRODUCTION

Despite ongoing global efforts, malaria remains a significant public health challenge, with an estimated 263 million cases and 597,000 deaths reported in 2023^[1]. In response, the World Health Organization's Global Technical Strategy for Malaria 2016-2030 aims to reduce global malaria incidence and mortality rates by at least 90% by 2030, emphasizing universal access to prevention, diagnosis, and treatment. However, eradication efforts are hindered by rising artemisinin resistance and *hrp2/hrp3* gene deletions, which can lead to false-negative results in HRP2-based rapid diagnostic tests and increase the risk of incomplete case detection and control^[2-4]. The persistence of malaria cases is partly driven by resistance to first-line antimalarial drugs, notably artemisinin, highlighting the urgent need for alternative therapeutic agents^[5]. However, the development of new antimalarial drugs remains slow and resource-intensive. Cheminformatic analysis of previously reported bioactive compounds offers a strategic approach to accelerate drug discovery at a lower cost^[6]. Among the promising candidates, xanthone and its derivatives have attracted considerable attention due to their diverse pharmacological properties, including antimalarial potential^[7-8].

Xanthone, an aromatic oxygenated heterocycle with a dibenzo- γ -pyrone scaffold ($C_{13}H_8O_2$), originates from acetate and shikimic acid biosynthetic pathways in higher plants, and its derivatives exhibit structural diversity based on the type and position of substituents on the fused benzene rings^[9]. Notably, many natural and synthetic xanthones have demonstrated antimalarial potential from *in vitro* studies^[10-12]. This study addresses this gap through a dual-pronged strategy. First, we employed a PRISMA-guided systematic review to filter the vast library of natural and synthetic

xanthones reported up to 2025, identifying derivatives with superior potency ($IC_{50} < 1 \mu M$). Second, we applied advanced *in silico* ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profiling to "de-risk" these hits early in the discovery phase. By systematically prioritizing compounds that balance molar potency with favorable drug-likeness and safety profiles, this study highlights the compound that was rationally selected as the lead candidate, offering a specific blueprint for the development of next-generation synthetic xanthones.

METHODS

The systematic review was conducted in strict accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement. Special attention was paid to the specific challenges of synthesizing *in vitro* data, incorporating guidelines for preclinical data reliability and reporting to ensure the robustness of the findings.

1. Protocol registration and reporting

This systematic review was not prospectively registered in PROSPERO or other systematic review registries. The decision not to register was based on the study design, which focuses on comprehensive data collection and compilation of antimalarial activity data for xanthone compounds rather than synthesizing qualitative evidence from heterogeneous *in vitro* and *in vivo* studies. The primary objective is to establish a curated database of xanthone antimalarial properties for subsequent cheminformatics analysis, which falls outside the typical scope of protocol-driven clinical or intervention reviews. However, to ensure methodological transparency and reproducibility, this review was conducted in accordance with the PRISMA 2020 statement, with all

methodological elements documented prior to data collection.

2. Search strategy and data sources

A comprehensive search was executed across three primary electronic databases: PubMed, Scopus, and Wiley Online Library. The search covered the literature from inception through September 17, 2025. The search strategy employed a combination of Medical Subject Headings (MeSH) and free-text keywords connected by Boolean operators to maximize sensitivity: ("xanthone" OR "xanthones") AND ("antimalarial" OR "malaria" OR "plasmodium" OR "antiplasmodial"). The protocol was designed in accordance with the PRISMA 2020 statement.

3. Eligibility criteria and selection process

We included original research articles published in English that reported in vitro (IC₅₀ values) or in vivo (parasite suppression) antimalarial activity of natural or synthetic xanthones. Exclusion criteria included: (1) Review articles, book chapters, and conference proceedings; (2) Studies focusing solely on non-malaria parasites; (3) Studies lacking quantitative efficacy data; and (4) Purely computational docking studies without biological validation.

Citations were exported to Rayyan AI for duplicate removal and systematic screening. Two independent reviewers (JTW and KADP) performed title and abstract screening in a blinded fashion, followed by full-text review of potentially eligible studies. Disagreements at each screening stage were documented and resolved through consensus-based discussion. When consensus could not be reached, a third senior reviewer (AKN) adjudicated the final inclusion decision. The entire disagreement resolution process was documented,

including the number of conflicts at each stage and the rationale for final decisions.

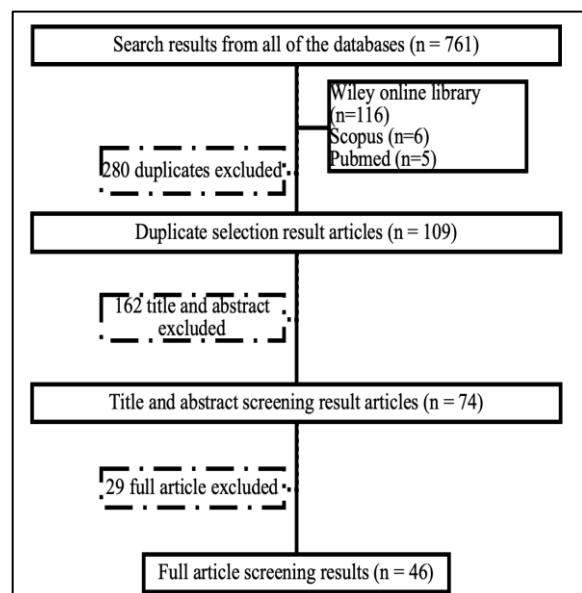
4. Data extraction and compound categorization

Data were extracted into a standardized logbook, capturing: compound name/structure, source (natural/synthetic), Plasmodium strain (e.g., 3D7, K1, W2), assay method (e.g., HPIA, LDH), and potency (IC₅₀). Potency was classified based on Batista et al.⁽¹⁴⁾: Highly Potent (IC₅₀ < 1 μ M), Promising (1–20 μ M), Moderate (20–100 μ M), Weak (100–200 μ M), and Inactive (> 200 μ M). Only "Highly Potent" compounds were selected for advanced in silico profiling.

5. Quality and Risk of Bias Assessment

To ensure the reliability of the included in vitro data, a Customized Quality Assessment Tool was developed for this study. This tool was adapted from principles outlined in the CRIS Guidelines (Checklist for Reporting In-vitro Studies) and the ToxRTTool, but tailored specifically to address the nuances of antimalarial drug discovery assays. The assessment framework comprises 8 key domains, scored on a binary scale (Yes=1, Partial=0.5, No=0), resulting in a maximum possible score of 8 points. Quality rating: >7 points (high quality), 5–6 points (moderate quality), <5 points (low quality).

6. In silico ADMET and drug-likeness profiling


The chemical structures of the selected potent compounds were converted to Canonical SMILES format using ChemDraw Professional 16.0. These SMILES were submitted to the pkCSM web server (<http://biosig.unimelb.edu.au/pkcs/>) to predict ADMET properties⁽¹³⁾. Key parameters analyzed included: Absorption (water solubility, Caco-2 permeability, and

human intestinal absorption), Distribution (CNS permeability and volume of distribution), Metabolism (Cytochrome P450 3A4 and 2D6 inhibition/substrate potential), and Toxicity (AMES mutagenicity, hepatotoxicity, and hERG inhibition). Drug-likeness was assessed using Lipinski's Rule of Five (MW < 500, LogP < 5, H-bond donors < 5, H-bond acceptors < 10).

RESULTS AND DISCUSSION

1. Literature search, study selection, and collecting compounds

The screening process conducted in this study is illustrated in Figure 1. A total of 165 compounds were collected from 46 selected articles. Detailed data extracted from each article are presented in Table 1.

Figure 1. Flowchart for selecting articles

Compounds were identified, and antimalarial efficacy was evaluated based on the half-maximal inhibitory concentration (IC_{50}) of each test compound. According to the classification proposed by Batista et al. [14], compounds were categorized as highly potent ($IC_{50} < 1 \mu M$), promising ($1 \mu M < IC_{50} \leq 20 \mu M$), moderately active ($20 \mu M < IC_{50} \leq 100 \mu M$), weakly active ($100 \mu M < IC_{50} \leq 200 \mu M$), or inactive ($IC_{50} > 200 \mu M$).

For in vivo assessments, antimalarial performance was determined by the percentage of parasitemia suppression, following the criteria outlined by Upegui et al. [15]: Chemosuppression above 80% was considered highly effective, between 50-80% as moderate, and below 50% as low efficacy.

2. Antimalarial activities from xanthone compounds, ADMET, and Lipinski rule of five by pkCSM

Malaria is caused by the Plasmodium protozoa, transmitted by female Anopheles mosquitoes, which inject sporozoites into the host's skin during a blood meal, initiating their journey to the liver via the bloodstream [58]. Among the five Plasmodium species infecting humans (*P. falciparum*, *P. vivax*, *P. malariae*, *P. ovale*, and *P. knowlesi*), *P. falciparum* predominates in Africa, while *P. Vivax* is most common in South America and Southeast Asia [59]. Although global malaria cases have declined in recent years [60], the disease remains prevalent in developing countries due to socio-economic and demographic factors that accelerate its transmission [61]. Its elimination remains suboptimal, partly due to the emergence of resistance to first-line therapies [5], [62-63].

The discovery of new antimalarial agents with proven efficacy, favorable pharmacokinetics, and acceptable toxicity profiles is crucial to support malaria eradication efforts. This study focuses on selecting xanthone derivatives with potent antimalarial activity based on in vitro and in vivo evaluations, followed by ADMET profiling to identify promising candidates for clinical development.

Table 1. Antimalarial activity based on selected compounds

No	Compound	Sources	Assay	Organism	IC ₅₀	Unit	Concl.	Ref
1	Xanthyl laurate	synthetic	HPIA	-	24.87	µM	moderate	[16]
2	Xanthyl myristate				33.46		moderate	
3	Xanthyl palmitate				24.24		moderate	
4	Xanthyl stearate				87.57		moderate	
5	Xanthyl oleate				46.66		moderate	
6	1-hydroxy-5,6,7 trimethoxyxanthone (dosis 1 mg)	Isolation of dried <i>Mammea siamensis</i> flower	In vivo 4-day suppressive test	<i>Pb</i> ANKA	21.91 ± 2.25	%	low	[17]
	1-hydroxy-5,6,7 trimethoxyxanthone (dosis 3 mg)				17.79 ± 2.31		low	
	1-hydroxy-5,6,7 trimethoxyxanthone (dosis 10 mg)				8.62 ± 1.21		low	
	1-hydroxy-5,6,7 trimethoxyxanthone		pfLDH	<i>Pf</i> K1	9.57 ± 1.59	µM	promising	[18]
7	xanthenol	synthetic	HPIA	-	35.97	µM	moderate	[19]
8	xanthene				55.011		moderate	
9	xanthone				581.63		inactive	
10	cochinchinone D	isolation of <i>Cratoxylum sumatranum</i> stem bark	pfLDH	<i>Pf</i> 3D7	4.79	µM	promising	[20]
11	cochinchinoxanthone				4.41		promising	
12	Cratoxyarborenone E	isolation of <i>C. glaucum</i> Korth leaves	pfLDH	<i>Pf</i> 3D7	5.82 ± 0.04	µM	promising	[21]
13	2-hydroxyxanthone	synthetic	Microscopic (candle jar method)	<i>Pf</i> 3D7	2.08	µM	promising	[22]
	isolation of dried <i>M. siamensis</i> flowers	pfLDH	<i>Pf</i> K1		74.97 ± 0.88	µM	74.97 ± 0.88	[18]
14	3,6-dihydroxy-4-methyl-9H-xanthen-9-one	synthetic	Parasite Culture Assay	<i>Pf</i> 3D7	0.71	µM	potent	[23]
15	3,4,6-trihydroxy-9H-xanthen-9-one				0.11		potent	
16	Mckeanianone A	isolation of <i>Garcinia mckeaniana</i> leaves	HIA	<i>Pf</i> TM4	6.2±0.4	µM	promising	[24]
				<i>Pf</i> K1	5.2±0.4		promising	
17	Mckeanianone B			<i>Pf</i> TM4	6.7±0.6		promising	
				<i>Pf</i> K1	6.4±0.5		promising	
18	Mckeanianone C			<i>Pf</i> TM4	6.0±1.1		promising	

No	Compound	Sources	Assay	Organism	IC ₅₀	Unit	Concl.	Ref
19	(Z)-2-methyl-4-(5,8,9-trihydroxy-2,2-dimethyl-12-(3-methylbut-2-en-1-yl)-6-oxo-2H,6H-pyran-3,2-b]xanthen-7-yl)but-2-en-1-yl acetate			<i>Pf</i> K1	6.6±0.7		promising	
				<i>Pf</i> TM4	8.5±1.2		promising	
				<i>Pf</i> K1	3.6±1.7		promising	
20	(Z)-5,8,9-trihydroxy-7-(4-hydroxy-3-methylbut-2-en-1-yl)-2,2-dimethyl-12-(3-methylbut-2-en-1-yl)-2H,6H-pyran-3,2-b]xanthen-6-one			<i>Pf</i> TM4	8.3±0.9		promising	
				<i>Pf</i> K1	7.3±1.2		promising	
21	Mckeanianone D	isolation of <i>G. mckeaniana</i> branches		<i>Pf</i> TM4	15.1±3.9		promising	
				<i>Pf</i> K1	14.3±1.8		promising	
22	Mckeanianone E			<i>Pf</i> TM4	27.7±3.4		moderate	
				<i>Pf</i> K1	25.7±2.3		moderate	
23	1,3,6-trihydroxy-2-(3-methylbut-2-enyl)-7-methoxy-8-(3-methylbut-2-enyl)xanthen-9-on	isolation of <i>G. parvifolia</i> (Miq) Miq Stem Bark	HPIA	-	453.61	µM	inactive	[25]
24	5-hydroxysterigmatocystin	isolation of scale insect fungus <i>Aschersonia coffeae</i> Henn.	GFP	<i>Pf</i> K1	25.12	µM	moderate	[26]
25	5-hydroxy-3-methoxyxanthone	isolation of <i>Hypericum lanceolatum</i> stem bark	pfLDH	<i>Pf</i> W2mef	3.26 ± 0.08	µM	promising	[27]
				<i>Pf</i> SH4	1.43 ± 0.48		promising	
26	3-Hydroxy-5-methoxyxanthone			<i>Pf</i> W2mef	33.84 ± 0.20		moderate	
				<i>Pf</i> SH4	34.09 ± 0.12		moderate	
27	gerontoxanthone I	isolation of <i>C. maingayi</i> and <i>C. Cochinchinense</i>	HIA	<i>Pf</i> K1	4.237	µM	promising	[28]
28	macluraxanthone				3.422		promising	
		isolation of <i>G. bancana</i> Miq. stem bark	pfLDH	<i>Pf</i> 3D7	4.28 ± 0.10		promising	[8]
29	formoxanthone C	isolation of <i>C. maingayi</i> and <i>C. Cochinchinense</i>	HIA	<i>Pf</i> K1	3.001		promising	[28]
30	fuscxanthone E				7.938		promising	
31	Vismione B				1.862		promising	
32	Vismione F				4.758		promising	
33	Vismione E				10.970		promising	

No	Compound	Sources	Assay	Organism	IC ₅₀	Unit	Concl.	Ref
34	1,5-dihydroxy-3-methoxy 4-isoprenylxanthone	isolation of <i>Chrysochlamys tenuis</i> leaves	fluorometric method	<i>Pf</i> W2	30.7±8.7	μM	moderate	[29]
35	6,11-dihydroxy-3,3-dimethyl-5-(3-methylbut-2-en-1-yl)-7a,11a-dihydro-3H,7H-pyranoc[2,3-c]xanthen-7-one				41.0±16.8		moderate	
36	2,6,8-trihydroxy-5,7-bis(3-methylbut-2-en-1-yl)-4a,9a-dihydro-9H-xanthen-9-one				19.7±1.8		promising	
37	4,6,8-trihydroxy-5,7-bis(3-methylbut-2-en-1-yl)-4a,9a-dihydro-9H-xanthen-9-one				19.7±1.8		promising	
38	5,10-dihydroxy-2,2-dimethyl-12-(3-methylbut-2-en-1-yl)-6a,10a-dihydro-2H,6H-pyranoc[3,2-b]xanthen-6-one	isolation of <i>Pentadesma butyracea</i> stem bark	HIA	<i>Pf</i> FcB1	7.63	μM	promising	[30]
39	gerontoxanthone C	isolation of <i>G. bancana</i> Miq.	pfLDH	<i>Pf</i> 3D7	5.52 ± 0.10	μM	promising	[31]
40	isojacareubin	stem bark			11.45 ± 0.30		inactive	
41	α-Mangostin	isolation of <i>G. mangostana</i> pericarp	pfLDH	<i>Pf</i> K1	2.2	μM	promising	[34]
		synthetic	SYBR green assay	<i>Pf</i> 3D7 <i>Pf</i> K1	17.9 9.7		promising	[10]
		synthetic	pfLDH	<i>Pf</i> D6 <i>Pf</i> W2	11.40±0.00 10.20±2.00		promising	[11]
		isolation of <i>Allanblackia monticola</i> leaves	HIA	<i>Pf</i> F32 <i>Pf</i> FcM29	6.4 5.3		promising	[33]
		synthetic	HIA	<i>Pf</i> K1	17 ± 1		promising	[34]
		isolation of <i>A. monticola</i> STANER L.C. stem bark	Parasite Culture Assay	<i>Pf</i> F32 <i>Pf</i> FcM29	5.36 6.33	μM	promising	[36]
		fluorometric method		<i>Pf</i> 3D7 <i>Pf</i> FCR3	36.10±4.9 0.20±0.01	μM	moderate potent	[15]

No	Compound	Sources	Assay	Organism	IC ₅₀	Unit	Concl.	Ref
		isolation of <i>G. mangostana</i> pericarp	In vivo (100 mg 1x7 days)	<i>Pb</i>	25.2±8.5	%	low	
42	caloxanthone C	isolation of <i>Calophyllum caledonicum</i>	HIA	<i>Pf</i> FcB1	3.439	µM	promising	[37]
43	demethylcalabaxanthone				2.381		promising	
44	calothwaitesixanthone				2.24		promising	
45	calozeyloxanthone				11.63		promising	
46	dombakinaxanthone				4.26		promising	
47	6-deoxy-g-mangostin				2.10		promising	
48	pancixanthone A	isolation of <i>G. vieillardii</i>			5.12		promising	
49	isocudraniaxanthone B				9.35		promising	
50	isocudraniaxanthone A				7.01		promising	
51	2-deprenylrheediaxanthone B				10.22		promising	
52	1,4,5-trihydroxyxanthone				14.33		promising	
53	1,3,5-trihydroxyxanthone	synthetic			65		moderate	
54	Ravenelin	isolation of fungus <i>E. rostratum</i>	SYBR green assay	<i>Pf</i> 3D7	3.4±0.4	µM	promising	[12]
55	9-hydroxycalabaxanthone (5,9-Dihydroxy-8-methoxy-2,2-dimethyl-7-(3-methyl-2-butenyl)-2H,6H-pyranol[-2-b]-xanthen-6-one)	synthetic	SYBR green assay	<i>Pf</i> 3D7 <i>Pf</i> K1	1.5 1.2	µM	promising promising	[10]
56	β-Mangostin	synthetic	pfLDH	<i>Pf</i> D6 <i>Pf</i> W2	7.42±0.49 4.71±0.67	µM	promising promising	[11]
57	3-Isomangostin			<i>Pf</i> D6 <i>Pf</i> W2	7.88±1.88 6.15±2.41		promising promising	
		isolation of <i>P. butyracea</i> stem bark	HIA	<i>Pf</i> FcB1	7.56	µM	promising	[30]
58	1,5-dihydroxy-3,6-dimethoxy-2,7-diprenylxanthone	isolation of <i>G. griffithii</i> stem bark	pfLDH	<i>Pf</i> Ghana	7.25	µM	promising	[38]
59	3b-hydroxy-23-oxo 9,16-lanostadien-26-oicacidorgarcihombronane D				7.71		promising	
60	3,6-Bis-(N,N-diethylamino)ethoxyxanthon	synthetic	HIA	<i>Pf</i> D6	2.2±0.5	µM	promising	[39]

No	Compound	Sources	Assay	Organism	IC ₅₀	Unit	Concl.	Ref
61	3,6-Bis-(N,N-diethylamino)propoxyxanthone				1.5±0.7		promising	
62	3,6-Bis-(N,N-diethylamino)butoxyxanthone				0.65±0.08		potent	
63	3,6-Bis- ε -(N,N-diethylamino)amyloxyxanthone			<i>Pf</i> W2	0.10±0.05		potent	
				<i>Pf</i> F86	0.12±0.07		potent	
				<i>Pf</i> F86	0.11±0.06		potent	
64	3,6-Bis-(N,N-diethylamino)hexyloxyxanthone			<i>Pf</i> D6	0.07±0.02		potent	
				<i>Pf</i> W2	0.07±0.03		potent	
				<i>Pf</i> F86	0.07±0.02		potent	
65	3,6-Bis-(N,N-diethylamino)octyloxyxanthone			<i>Pf</i> D6	0.07±0.02		potent	
66	1-Hydroxy-7-methoxyxanthone	isolation of <i>M. ferrea</i> roots	pfLDH	<i>Pf</i> K1	345.56 ± 3.51	μM	inactive	[40]
67	1-Hydroxy-5-methoxyxanthone				163.75 ± 1.71		low	
68	1,6-Dihydroxyxanthone				226.13 ± 1.32		inactive	
		isolation of dried <i>M. siamensis</i> flowers			47.94 ± 5.16		moderate	[18]
		synthetic	Parasite Culture Assay	<i>Pf</i> 3D7	71.78±0.31		moderate	[41]
				<i>Pf</i> FCR3	81.77±5.78		moderate	
		isolation of <i>G. vieillardii</i> stem bark	HIA	<i>Pf</i> FcB1	18.42	μM	promising	[37]
69	1,5-Dihydroxyxanthone	isolation of <i>M. ferrea</i> roots	pfLDH	<i>Pf</i> K1	106.98 ± 4.41	μM	low	[40]
70	Rheediachromenoxyxanthone				106.98 ± 4.41		low	
71	1,5-Dihydroxy-3-methoxyxanthone				198.27 ± 2.43		low	
72	2,5-Dihydroxy-1-methoxyxanthone				46.30 ± 1.65		moderate	
73	Griseoxanthone C	isolation of <i>Dacryodes edulis</i> leaves and stem bark	SYBR green assay	<i>Pf</i> 3D7	91.91	μM	moderate	[42]
				<i>Pf</i> Dd2	91.91		moderate	

No	Compound	Sources	Assay	Organism	IC ₅₀	Unit	Concl.	Ref
74	3,6-bis-(x N,N-diethylaminoamyoxy)-4,5-difluoroxanthone	synthetic	fluorometric method	<i>Pf</i> D6	0.093	μM	potent	[43]
				<i>Pf</i> W2	0.15		potent	
75	1,3,8-trihydroxy-6-methylxanthone (dosis 20 mg/kg.day)	synthetic	In vivo 4-day suppressive test	<i>Pb</i> ANKA	17.0	%	promising	[44]
76	1,3,6-trihydroxy-8-methylxanthone (norlichexanthone) (dosis 20 mg/kg.day)				15.0		promising	
77	1,3-dihydroxy-xanthone (dosis 20 mg/kg.day)				22.9		moderate	
78	1,3,6,8-tetrahydroxyxanthone (dosis 20 mg/kg.day)				8.0		promising	
79	7-O-Methylgarcinone E	isolation of <i>G. cowia</i> Roxb. stem bark	HIA	NA	5.23	μM	promising	[45]
80	cowanin				6.28		moderate	
81	cowanol				3.24		inactive	
82	cowaxanthone				3.65		promising	
83	4,5-Dihydroxy-3-methoxyxanthone	isolation of dried <i>M. siamensis</i> flowers	pfLDH	<i>Pf</i> K1	68.55 ± 2.54	μM	moderate	[18]
84	4-Hydroxyxanthone				41.67 ± 2.23		moderate	
85	1,7-Dihydroxyxanthone				45.00 ± 3.51		moderate	
		isolation of <i>G. dulcis</i> bark	HIA	NA	17.02	μM	promising	[46]
86	3,4,5-Trihydroxyxanthone							
		isolation of dried <i>M. siamensis</i> flowers	pfLDH	<i>Pf</i> K1	15.48 ± 2.63	μM	promising	[18]
							moderate	[47]
87	5-Hydroxy-1-methoxyxanthone	isolation of dried <i>M. siamensis</i> flowers	pfLDH	<i>Pf</i> K1	29.32 ± 4.44	μM	moderate	[18]
88	1,5-Dihydroxy 6-methoxyxanthone				22.27 ± 1.67		moderate	
89	1,8-Dihydroxy-3,7-dimethoxyxanthone	isolation of <i>Andrographis paniculata</i> roots	pfLDH	<i>Pf</i> FSG	111.11	μM	low	[48]
					52.08		moderate	
90	4,8-Dihydroxy-2,7-dimethoxyxanthone		Parasite Culture Assay	pfLDH	111.11		low	
					31.25		moderate	

No	Compound	Sources	Assay	Organism	IC ₅₀	Unit	Concl.	Ref
91	1,2-Dihydroxy-6,8-dimethoxyxanthone	pFLDH Parasite Culture Assay	pFLDH		13.89		promising	
					10.42		inactive	
			In vivo 4-day suppressive test (30 mg/kg)	Pb NK65	62.1	%	moderate	
92	3,7,8-Trimethoxy-8-hydroxyxanthone	pFLDH Parasite Culture Assay	pFLDH	Pf FSG	105,61	µM	low	
					151,82		low	
93	MDN-0185	isolation of <i>Micromonospor</i> a sp	pFLDH	Pf 3D7	0.009	µM	potent	[49]
94	Tovophyllin A	isolation of <i>A. monticola</i> leaves	HIA	Pf F32	5.0	µM	promising	[33]
				Pf FcM29	5.6		promising	
95	Allanxanthone C		HIA	Pf F32	5.5		promising	
				Pf FcM29	6.8		promising	
			Parasite culture Assay	Pf F32	6.9		promising	[36]
				Pf FcM29	5.6		promising	
96	1,7-Dihydroxy-3-methoxy-2-(3-methylbut-2-enyl)xanthone		HIA	Pf F32	5.8		promising	[33]
				Pf FcM29	8.0		promising	
97	gaboxanthone	isolation of <i>Symponia globulifera</i> seed shells	Parasite Culture Assay	Pf W2	3.53	µM	promising	[50]
98	Symponin				1.29		promising	
99	Globuliferin				3.86		promising	
100	2,5-dihydroxyxanthone	synthetic	HIA	Pf D6	53±10	µM	moderate	[47]
101	4,5-dihydroxyxanthone				28±6		moderate	
102	2,3,4-trihydroxyxanthone				36±7		moderate	
103	3,4,6-trihydroxyxanthone				35±4		moderate	
104	2,3,4,5-tetrahydroxyxanthone				9.0±1.0		promising	
105	2,3,4,6-tetrahydroxyxanthone				30±15		moderate	
106	3,4,5,6-tetrahydroxyxanthone				1.3±0.7		promising	
107	2,3,4,5,6-pentahydroxyxanthone				0.7±0.5		Potent	

No	Compound	Sources	Assay	Organism	IC ₅₀	Unit	Concl.	Ref
108	1,3,5,6,7-pentahydroxyxanthone				6.5±0.5		Promising	
109	1,2,3,5,6,7-hexahydroxyxanthone				54		moderate	
110	2,3,4,5,6,7-hexahydroxyxanthone				0.2±0.1		potent	
111	garcinixanthone I	isolation of <i>G. dulcis</i> barks	HIA	NA	2,13	µM	promising	[46]
112	smeathxanthone A	isolation of <i>G. polyantha</i> roots	Parasite Culture Assay	<i>Pf</i> NF54	2.5 - 4.1	µM	promising	[51]
113	smeathxanthone B							
114	chefouxanthone							
115	3-(2-(diethylamino)ethoxy)-6,8-dihydroxy-2-methoxy-7-(3-methyl-3l5-buta-2,3-dien-1-yl)-1-(3-methylbut-2-en-1-yl)-9H-xanthen-9-one	synthetic	HIA	<i>Pf</i> K1	0.3 ± 0.02	µM	potent	[34]
116	3-(2-(dimethylamino)ethoxy)-6,8-dihydroxy-2-methoxy-7-(3-methyl-3l5-buta-2,3-dien-1-yl)-1-(3-methylbut-2-en-1-yl)-9H-xanthen-9-one				0.6 ± 0.03		potent	
117	3-(3-(dimethylamino)propoxy)-6,8-dihydroxy-2-methoxy-7-(3-methyl-3l5-buta-2,3-dien-1-yl)-1-(3-methylbut-2-en-1-yl)-9H-xanthen-9-one				0.1 ± 0.01		potent	
118	3-(3-(diethylamino)-2-hydroxypropoxy)-6,8-dihydroxy-2-methoxy-7-(3-methyl-3l5-buta-2,3-dien-1-yl)-1-(3-methylbut-2-en-1-yl)-9H-xanthen-9-one				0.05 ± 0.005		potent	
119	3-(3-(dimethylamino)-2-hydroxypropoxy)-6,8-dihydroxy-2-methoxy-7-(3-methyl-3l5-buta-2,3-dien-1-yl)-1-(3-methylbut-2-en-1-yl)-9H-xanthen-9-one				0.6 ± 0.03		potent	
120	1-hydroxy-3,6-bis(2-hydroxy-3-(isopropylamino)propoxy)-7-methoxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one				0.6 ± 0.03		potent	

No	Compound	Sources	Assay	Organism	IC ₅₀	Unit	Concl.	Ref
121	(E)-2-(3,7-dimethylocta-2,6-dien-1-yl)-1,3,6-trihydroxy-7-methoxy-8-(3-methylbut-2-en-1-yl)-9H-xanthen-9-one	isolation of <i>P. butyraceae</i> stem bark	HIA	<i>Pf</i> FcB1	6.28	µM	promising	[30]
122	5,8,9-trihydroxy-2,2-dimethyl-7,10-bis(3-methylbut-2-en-1-yl)-2H,6H-pyran[3,2-b]xanthen-6-one				5.84		promising	
123	2,5,9,11-tetrahydroxy-3,3-dimethyl-6,10-bis(3-methylbut-2-en-1-yl)-2,3-dihydropyran[3,2-a]xanthen-12(1H)-one				NA		NA	
124	(E)-3,6,8-trihydroxy-1-(7-hydroxy-3,7-dimethyloct-2-en-1-yl)-2-methoxy-9H-xanthen-9-one				23.36		moderate	
125	5,9-dihydroxy-8-methoxy-2,2-dimethyl-7-(3-methylbut-2-en-1-yl)-2H,6H-pyran[3,2-b]xanthen-6-one				4.66		promising	
126	(E)-1-(3,7-dimethyloct-2-en-1-yl)-3,6,8-trihydroxy-2-methoxy-9H-xanthen-9-one				8.25		promising	
127	garcinone E	isolation of <i>P. butyraceae</i> pericarp		<i>Pf</i> W2	6.03	µM	promising	[52]
128	5,9,11-trihydroxy-3,3-dimethyl-6,10-bis(3-methylbut-2-en-1-yl)-2,3-dihydropyran[3,2-a]xanthen-12(1H)-one	isolation of <i>P. butyraceae</i> stem bark		<i>Pf</i> FcB1	6.03	µM	promising	[30]
129	pentadexanthone	isolation of <i>P. butyraceae</i>	HIA	<i>Pf</i> W2	3.0	µM	promising	[52]
130	cratoxylone	pericarp			2.89		promising	
131	1,5,6-trihydroxy-3-methoxy-7-geranylxanthone	isolation of <i>Rheedia acuminata</i> trunk bark	HIA	<i>Pf</i> FcB1	10.5	µM	promising	[53]
132	12b-hydroxy-des-D-garcigerrin A	isolation of <i>G. dulcis</i> bark			15.1		promising	
133	5,12,14-trihydroxy-2,2,10,10-tetramethyl-2H,6H,10H-dipyran[3,2-b:2',3'-i]xanthen-6-one	isolation of <i>R. acuminata</i> trunk bark		<i>Pf</i> FcB1	11.4	µM	promising	

No	Compound	Sources	Assay	Organism	IC ₅₀	Unit	Concl.	Ref
134	Chaetoxanthone A	isolation of the marine-derived fungus <i>Chaetomium</i> sp.	HIA	<i>Pf</i> K1	9.45	μM	promising	[54]
135	Chaetoxanthone B				1.41		promising	
136	Chaetoxanthone C				10.24		promising	
137	6,11-Dihydroxy-3-methyl-3-(4-methylpent-3-enyl)pyrano[2,3-c]xanthen-7(3H)-one	isolation of <i>G. livingstonei</i> root bark	pfLDH	<i>Pf</i> Ghana	52±17	μM	moderate	[55]
138	4[(E)-3,7-Dimethylocta-2,6-dienyl]-1,3,5-trihydroxy-9H-xanthen 9-one				59.0±8.7		moderate	
139	1,4,5-Trihydroxy-3-(3-methylbut-2-enyl)-9H-xanthen-9-one				10.0±0.1		promising	
140	Garcilivin A				6.7±1.5		promising	
141	Garcilivin C				>64		moderate	
142	1-O-methylsympoxanthone	isolation of <i>G. dulcis</i> bark	HIA	NA	7.31	μM	promising	[46]
143	sympoxanthone				11.43		promising	
144	norcowanin	isolation of <i>A. monticola</i> STANER L.C. stem bark	Parasite Culture Assay	<i>Pf</i> F32 <i>Pf</i> fcM29	7.07 22.47	μM	promising moderate	[36]
145	1,6,8-Trihydroxyxanthone	synthetic	Parasite Culture Assay	<i>Pf</i> 3D7 <i>Pf</i> FCR3	6.10±2.01 6.76±2.38	μM	promising promising	[41]
			HPIA	-	2854	μM	inactive	
146	1,5,6-Trihydroxyxanthone		Parasite Culture Assay	<i>Pf</i> 3D7 <i>Pf</i> FCR3	27.64±0.19 64.09±5.08	μM	moderate moderate	
147	1-Hydroxy-5-chloroxanthone			<i>Pf</i> 3D7 <i>Pf</i> FCR3	85.30±0.87 89.85±7.69		moderate moderate	
148	1,6-Dihydroxy-5-methylxanthone			<i>Pf</i> 3D7 <i>Pf</i> FCR3	46.69±0.29 59.73±0.78		moderate moderate	
149	gamma-mangostin	isolation <i>G. mangostana</i> pericarp	fluorometric method	<i>Pf</i> 3D7 <i>Pf</i> FCR3	12.40±1.0 >121.20±1.0	μM	promising low	[35]
			In vivo (100 mg 1x7 days)	<i>Pb</i>	22.4±6.9	%	moderate	
150	6-chloro-1-[(2-(diethylamino)ethyl]amino]-9H-xanthen-9-one	synthetic	Parasite Culture Assay	<i>Pf</i> 3D7 <i>Pf</i> Dd2	3.7±0.5 3.9±0.3	μM	promising promising	[56]

No	Compound	Sources	Assay	Organism	IC ₅₀	Unit	Concl.	Ref
151	6-chloro-1-((2-(diethylamino)ethyl)amino)-9H-xanthen-9-one			<i>Pf</i> 3D7	2.4±0.2		promising	
				<i>Pf</i> Dd2	13.5±0.9		promising	
152	3,4,5,6-tetrachloro-1-((2-(diethylamino)ethyl)amino)-9H-xanthen-9-one			<i>Pf</i> 3D7	4.4±0.7		promising	
				<i>Pf</i> Dd2	25.8±1.12		moderate	
153	4,5,6-trichloro-1-((2-(diethylamino)ethyl)amino)-9H-xanthen-9-one			<i>Pf</i> 3D7	9.9±0.8		promising	
				<i>Pf</i> Dd2	13.6±1.0		promising	
154	3,5,6-trichloro-1-((2-(diethylamino)ethyl)amino)-9H-xanthen-9-one			<i>Pf</i> 3D7	2.8±0.5		promising	
				<i>Pf</i> Dd2	33.3±0.3		moderate	
155	3,4,6-trichloro-1-((2-(diethylamino)ethyl)amino)-9H-xanthen-9-one			<i>Pf</i> 3D7	1.7±0.5		promising	
				<i>Pf</i> Dd2	66.4±0.7		moderate	
156	3,4,5-trichloro-1-((2-(diethylamino)ethyl)amino)-9H-xanthen-9-one			<i>Pf</i> 3D7	7.1±0.8		promising	
				<i>Pf</i> Dd2	9.7±0.2		promising	
157	4,6-dichloro-1-((2-(diethylamino)ethyl)amino)-9H-xanthen-9-one			<i>Pf</i> 3D7	18.1±1.3		promising	
				<i>Pf</i> Dd2	38.3±0.6		moderate	
158	3,5-dichloro-1-((2-(diethylamino)ethyl)amino)-9H-xanthen-9-one			<i>Pf</i> 3D7	2.25±0.7		promising	
				<i>Pf</i> Dd2	46.6±2.3		moderate	
159	3,6-dichloro-1-((2-(diethylamino)ethyl)amino)-9H-xanthen-9-one			<i>Pf</i> 3D7	12.5±0.8		inactive	
				<i>Pf</i> Dd2	13.7±0.3		inactive	
160	5,6-dichloro-1-((2-(diethylamino)ethyl)amino)-9H-xanthen-9-one			<i>Pf</i> 3D7	3.7±0.5		inactive	
				<i>Pf</i> Dd2	8.1±0.6		inactive	
161	5-chloro-1-((2-(diethylamino)ethyl)amino)-9H-xanthen-9-one			<i>Pf</i> 3D7	4.1±0.7		inactive	
				<i>Pf</i> Dd2	5.9±0.3		promising	
162	5-O-methylcelebixanthone	isolation of <i>C. cochinchinense</i> (LOUR.) BLUME roots	HIA	<i>Pf</i> K1	8.99	µM	promising	[57]
163	celebixanthone				14.33		promising	
164	cochinchinone A				16.06		promising	
165	cochinchinone C				6.34		promising	

Abbreviation: HPIA = Heme polymerization inhibitory assay, Pb = *Plasmodium berghei*, pfLDH = *Plasmodium falciparum* lactate dehydrogenase, Pf = *Plasmodium falciparum*, HIA = Hypoxanthine inhibitory assay, GFP = Green fluorescent protein, NA: not available in the article.

This review identified 121 xanthone derivatives from both natural isolates and synthetic sources, with most originating from the genus *Garcinia* (Clusiaceae)^[64]. Xanthones are widely distributed across various plant parts, including leaves, stems, roots, flowers, and fruit pericarps, as well as particular fungi, highlighting their diverse biological sources and potential for antimalarial drug development. Structurally, xanthones are plant-derived phenolic compounds with a C6-C1-C6 tricyclic backbone, comprising two aromatic rings formed via distinct biosynthetic pathways: the acetate-derived A-ring (carbons 1-4) and the shikimate-derived B-ring (carbons 5-8)^[65]. Their structural diversity, driven by various substituents, allows xanthones to be classified into several subgroups: simple xanthones, xanthone glycosides, prenylated xanthones, xanthonolignoids, bisxanthones, and miscellaneous xanthones^[66].

Various in vitro assays have been employed to assess the antimalarial activity of xanthone derivatives, including heme polymerization inhibition assay (HPIA), hypoxanthine incorporation assay (HIA), parasite lactate dehydrogenase (pfLDH) assay, green fluorescent protein (GFP) tagging, fluorometric and SYBR Green I assays, as well as traditional parasite culture and microscopic examination. HPIA targets the parasite's heme detoxification pathway by blocking the conversion of toxic heme into inert hemozoin, leading to parasite death^[67]. HIA measures parasite proliferation by tracking the incorporation of radiolabeled hypoxanthine into nucleic acids^[68]. The pfLDH assay evaluates parasite viability by monitoring lactate production, a key step in ATP generation^[69]. SYBR Green I, GFP, and fluorometric methods detect parasite DNA within infected red blood cells using

fluorescence-based quantification^[70]. Meanwhile, parasite culture assays rely on Giemsa-stained blood smears observed microscopically to determine parasitemia^[71]. For in vivo evaluation, the 4-day suppressive test is commonly used, in which the efficacy of compounds is assessed by measuring parasitemia reduction in *Plasmodium berghei* ANKA-infected mice following administration of test compounds^[72].

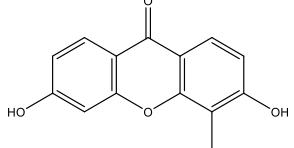
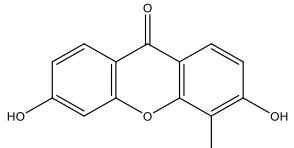
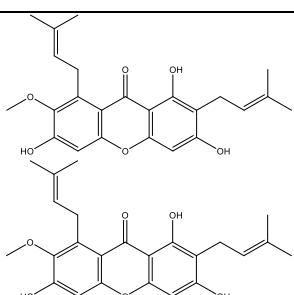
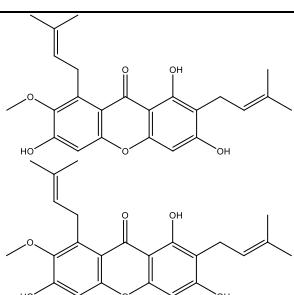
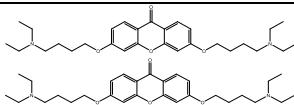
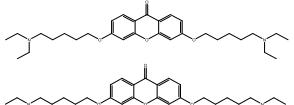
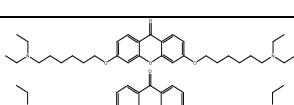
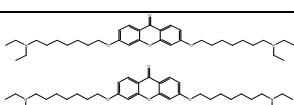
Several *Plasmodium falciparum* strains have been widely used in in vitro antimalarial research, including 3D7, D6, Dd2, F32, F86, FcB1, FcM29, FCR3, FSG, Ghana, K1, NF54, SH4, SHF4, W2, W2mef, and TM4. Among these, the 3D7 strain is the most frequently employed for evaluating the antimalarial activity of xanthone derivatives (30 compounds), owing to its known sensitivity to chloroquine. This sensitivity is reflected in its low inhibitory concentrations and is attributed to mutations that significantly reduce glutathione reductase activity, thereby impairing the parasite's ability to counter oxidative stress^[73]. Other strains such as NF54, D6, F32, and TM4 are classified as chloroquine-sensitive, whereas Dd2, FcB1, and FcM29 exhibit chloroquine resistance, and K1, W2, FCR3, and W2mef are recognized as multidrug-resistant strains^[74]. In vivo, *Plasmodium berghei* is commonly used due to its rodent-specific infection profile, making it a safe and practical model for investigating malaria pathogenesis and therapeutic efficacy^[75].

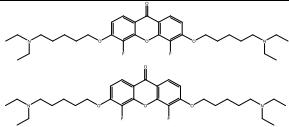
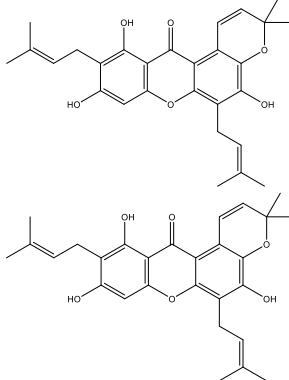
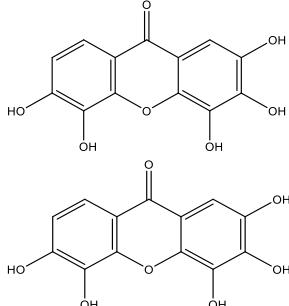
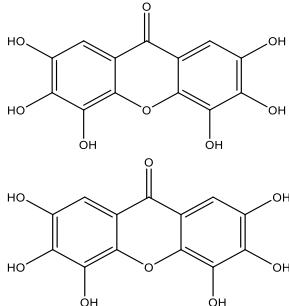
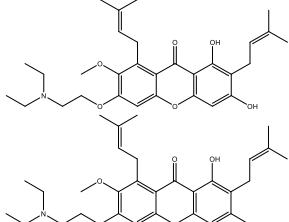
Eighteen xanthone derivatives were identified as potent antimalarial candidates based on various assay methods and *Plasmodium* strains. Compounds **14**, **15**, and **114** were tested in parasite culture assays against the 3D7 and NF54 strains, both known for their chloroquine sensitivity^{(23),(51)}. Compound **9** showed intense activity in the pfLDH assay against 3D7^[49].

Compound **41** (α -mangostin) was uniquely profiled across multiple methods and strains, including fluorometric, pfLDH, SYBR Green, HIA, and parasite culture assays, showing consistent potency against resistant strains such as FCR3, K1, FcM29, and moderate activity in 3D7 [10-11],[15],[32-34],[36]. Compound **74** was evaluated fluorometrically against D6 and W2[43]. Several compounds **62, 63, 64, 65, 107, and 115-120** were tested using the hypoxanthine incorporation assay (HIA) across strains including D6, W2, F86, and K1 [34],[47],[76]. Compound **127** (garcinone E) was assessed via HIA against W2 and FcB1, with promising results despite FcB1 being less commonly used^{[30],[52]}. Overall, compounds **41** and **127** stood out for their broad-spectrum activity across multiple strains and assay platforms.

3. Toxicity, pharmacokinetics, and Lipinski rule of five by pkCSM

Potent antimalarial compounds were collected, and their corresponding SMILES notations were retrieved using PubMed or ChemDraw (Table 2). The toxicity profiles, pharmacokinetic parameters, and compliance with Lipinski's Rule of Five for each compound, as predicted by pkCSM, are summarized in Table 3.









To be successfully developed into a therapeutic agent, an active compound must exhibit favorable pharmacokinetic properties, as these are key determinants of its efficacy and safety^[77]. In recent years, in silico ADMET prediction methods have gained prominence in drug discovery due to their cost-effectiveness and ability to rapidly evaluate pharmacokinetic profiles without the need for extensive laboratory resources [78]. A wide array of in silico ADMET tools is now available, ranging from commercial platforms such as CASE ULTRA, DEREK, META-PC, METEOR, PASS, and GUSAR to freely accessible online servers like






ADMETlab, *admetSAR*, pkCSM, and SwissADME, each offering rapid profiling capabilities to support early-stage decision-making^[79]. In this study, pkCSM was selected as the ADMET screening platform due to its accessible web-based interface and robust predictive models, which assist medicinal chemists in optimizing the balance between potency, safety, and pharmacokinetic performance (<http://structure.bioc.cam.ac.uk/pkcsdm>)^[13].

This study evaluates the drug-likeness of xanthone derivatives using 22 pharmacokinetic and toxicity-related parameters, including molecular weight, LogP, hydrogen bond acceptors and donors, Caco-2 permeability, solubility, human intestinal absorption, volume of distribution (VDss), blood-brain barrier (BBB) and central nervous system (CNS) permeability, CYP450 substrate and inhibition profiles (CYP2D6, CYP3A4, CYP1A2, CYP2C19, CYP2C9), total clearance, renal OCT2 substrate status, AMES toxicity, rat acute toxicity, and hepatotoxicity. These parameters reflect both Lipinski's Rule of Five and comprehensive ADMET profiling. A total of 18 xanthone-based compounds with reported antimalarial activity were selected from previous literature and screened against these criteria (Table 2). The most promising candidate was identified based on its compliance with Lipinski's rules, favorable absorption characteristics, and absence of AMES toxicity and hepatotoxicity.

The "Rule of Five" serves as a predictive guideline for assessing the oral bioavailability of biologically active compounds^[80]. According to this principle, a substance is more likely to be effectively absorbed through the gastrointestinal tract if it adheres to specific physicochemical thresholds.

Table 2. List of potent antimalarial xanthone derivatives

No	Compound	CID	IUPAC name	Structure	SMILES
14	3,6-dihydroxy-4-methyl-9H-xanthen-9-one	-	3,6-dihydroxy-4-methylxanthen-9-one		O=C1C2=C(OC3=C1C=CC(O)=C3)C(C)=C(O)C=C2
15	3,4,6-trihydroxy-9H-xanthen-9-one	-	3,4,6-trihydroxy-9H-xanthen-9-one		O=C1C2=C(OC3=C1C=CC(O)=C3)C(O)=C(O)C=C2
41		<u>5281</u> <u>650</u>	1,3,6-trihydroxy-7-methoxy-2,8-bis(3-methylbut-2-enyl)xanthen-9-one		CC(=CCC1=C(C2=C(C=C1O)OC3=C(C2=O)C(=C(C(=C3O)OC)CC=C(C(C)C)O)C
62	3,6-Bis-(N,N-diethylamino)butoxyxanthone	-	3,6-bis(4-(diethylamino)butoxy)-9H-xanthen-9-one		O=C1C2=CC=C(OCCCCN(CC)CC)C=C2OC3=CC(OCCCCN(CC)CC)=CC=C31
63	3,6-Bis- ϵ -(N,N-diethylamino)amyloxyxanthone	-	3,6-bis((5-(diethylamino)pentyl)oxy)-9H-xanthen-9-one		O=C1C2=CC=C(OCCCCCCN(CC)CC)C=C2OC3=CC(OCCCCCCN(CC)CC)=CC=C31
64	3,6-Bis-(N,N-diethylamino)hexyloxyxanthone	-	3,6-bis((6-(diethylamino)hexyl)oxy)-9H-xanthen-9-one		O=C1C2=CC=C(OCCCCCCCN(CC)CC)C=C2OC3=CC(OCCCCCCN(CC)CC)=CC=C31
65	3,6-Bis-(N,N-diethylamino)octyloxyxanthone	-	3,6-bis((7-(diethylamino)heptyl)oxy)-9H-xanthen-9-one		O=C1C2=CC=C(OCCCCCCCN(CC)CC)C=C2OC3=CC(OCCCCCCN(CC)CC)=CC=C31

No	Compound	CID	IUPAC name	Structure	SMILES
74	3,6-bis(x N,N-diethylaminoamyl oxy)-4,5-difluoro-9H-xanthen-9-one	-	3,6-bis((5-(diethylamino)pentyl)oxy)-4,5-difluoro-9H-xanthen-9-one		O=C1C2=C(C(F)=C(OCCCCCCN(CC)CC)=C2)OC3=C(F)C(OCCCCCCN(CC)CC)=CC=C31
93	MDN-0185	1395 9007 6	(2R,11S,13R,20S,21R,25R)-2,21,28-trihydroxy-7-methyl-14,16,19-trioxa-6-azahexacyclo[15.11.02,11.04,9.013,29.018,27.020.25]nonacosa-1(29),4(9),7,17,22,27-hexaene-3,5,10,26-tetrone		CC(=CCC1=C(C2=C(C=C1O)OC3=C(C=C4C(=C3C2=O)C=CC(O4)(C)C)O)CC=C(C(C)C)O)C
107	2,3,4,5,6-pentahydroxyxanthone	9993 573	2,3,4,5,6-pentahydroxyxanthen-9-one		C1=CC(=C(C2=C1C(=O)C3=CC(=C(C(=C3O2)O)O)O)O)O
114	2,3,4,5,6,7-hexahydroxyxanthone	9838 994	2,3,4,5,6,7-hexahydroxyxanthen-9-one		C1=C2C(=C(C(=C1O)O)O)OC3=C(C=C(C3C2=O)O)O
115	3-(2-(diethylamino)ethoxy)-6,8-dihydroxy-2-methoxy-7-(3-methyl-3l5-buta-2,3-dien-1-yl)-1-(3-methylbut-2-en-1-yl)-9H-xanthen-9-one	-	3-(2-(diethylamino)ethoxy)-6,8-dihydroxy-2-methoxy-7-(3-methylbut-2-en-1-yl)-1-(3-methylbut-2-en-1-yl)-9H-xanthen-9-one		OC1=C(C/C=C(C/C)C(O)=CC2=C1C(C3=C(C/C=C(C/C)C(OC)=C(OCCN(CC)CC)C)C=C3O2)=O

No	Compound	CID	IUPAC name	Structure	SMILES
116	3-(2-(dimethylamino)ethyl)oxy-6,8-dihydroxy-2-methoxy-7-(3-methyl-315-but-2,3-dien-1-yl)-1-(3-methylbut-2-en-1-yl)-9H-xanthen-9-one	-	3-(2-(dimethylamino)ethyl)oxy-6,8-dihydroxy-2-methoxy-7-(3-methyl-315-but-2,3-dien-1-yl)-1-(3-methylbut-2-en-1-yl)-9H-xanthen-9-one		OC1=C(C/C=C(C)/C)C(O)=CC2=C1C(C3=C(C/C=C(C)/C)C(OC)=C(OCCN(CC)C)=C3O2)=O
117	3-(3-(dimethylamino)propoxy)-6,8-dihydroxy-2-methoxy-7-(3-methyl-315-but-2,3-dien-1-yl)-1-(3-methylbut-2-en-1-yl)-9H-xanthen-9-one	-	3-(3-(dimethylamino)propoxy)-6,8-dihydroxy-2-methoxy-7-(3-methyl-315-but-2,3-dien-1-yl)-1-(3-methylbut-2-en-1-yl)-9H-xanthen-9-one		OC1=C(C/C=C(C)/C)C(O)=CC2=C1C(C3=C(C/C=C(C)/C)C(OC)=C(OCCN(CC)C)=C3O2)=O
118	3-(3-(diethylamino)-2-hydroxypropoxy)-6,8-dihydroxy-2-methoxy-7-(3-methyl-315-but-2,3-dien-1-yl)-1-(3-methylbut-2-en-1-yl)-9H-xanthen-9-one	-	3-(3-(diethylamino)-2-hydroxypropoxy)-6,8-dihydroxy-2-methoxy-7-(3-methyl-315-but-2,3-dien-1-yl)-1-(3-methylbut-2-en-1-yl)-9H-xanthen-9-one		OC1=C(C/C=C(C)/C)C(O)=CC2=C1C(C3=C(C/C=C(C)/C)C(OC)=C(OCC(O)CN(CC)CC)=C3O2)=O
119	3-(3-(dimethylamino)-2-hydroxypropoxy)-6,8-dihydroxy-2-methoxy-7-(3-methyl-315-but-2,3-dien-1-yl)-1-(3-methylbut-2-en-1-yl)-9H-xanthen-9-one	-	3-(3-(dimethylamino)-2-hydroxypropoxy)-6,8-dihydroxy-2-methoxy-7-(3-methyl-315-but-2,3-dien-1-yl)-1-(3-methylbut-2-en-1-yl)-9H-xanthen-9-one		OC1=C(C/C=C(C)/C)C(O)=CC2=C1C(C3=C(C/C=C(C)/C)C(OC)=C(OCC(O)CN(CC)C)=C3O2)=O
120	1-hydroxy-3,6-bis(2-hydroxy-3-(isopropylamino)propoxy)-7-methoxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one	-	1-hydroxy-3,6-bis(2-hydroxy-3-(isopropylamino)propoxy)-7-methoxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one		OC1=C(C/C=C(C)/C)C(OCC(O)CNC(CC)C)=CC2=C1C(C3=C(C/C=C(C)/C)C(OC)=C(OCC(O)CNC(CC)C)=C3O2)=O

No	Compound	CID	IUPAC name	Structure	SMILES
127	garcinone E	1029 8511	2,3,6,8-tetrahydroxy-1,4,7-tris(3-methylbut-2-enyl)xanthen-9-one		CC(=CCC1=C(C2=C(C=C1O)OC3=C(C(=C(C=C3C2=O)CC=C(C(C)C)O)O)C=C(C(C)C)O)C

Abbreviation: “–” in the CID column indicates the compound is not in PubChem; SMILES was derived from literature-reported structures

Table 3. Drug likeness of potent antimalarial xanthone derivatives

Compound	Rule of Five				Absorption			Distribution				Metabolism						Excretion			Toxicity		
	Molecular Weight	LogP	#Acceptors	#Donors	Caco2 Permeability log Papp in 10 ⁻⁶ cm/s	Solubility log mol/L	Interspecies Final absorption (human) %absorbed	VD _{ss} (human) log L/kg	BBB permeability log BB	CNS permeability log PS	CYP 2D6 substrate	CYP 3A4 substrate	CYP 1A2 inhibitor	CYP 2C9 inhibitor	CYP 2C19 inhibitor	CYP 2D6 inhibitor	CYP 3A4 inhibitor	Total Clearance mL/min/kg	Renal OCT2 substrate	AMES toxicity	Rat Acute Toxicity LD ₅₀ mol/kg	Hepa Toxicity	
1	242.23	266.582	4	2	-	3.424	1.103	94.6	-0.063	-0.078	1.943	N	N	Y	Y	Y	N	0.52	N	Y	1.818	N	
2	2442.002	2.063	5	3	-	2.918	1.165	95.415	-0.152	0.9884	2.265	N	N	Y	N	N	N	0.463	N	Y	1.865	N	
3	410.466	5.089	6	3	-	4.067	0.048	93.647	-0.282	-1.075	1.984	N	Y	Y	Y	N	N	0.43	N	Y	1.949	N	
4	482.665	59.478	6	0	-	5.322	1.346	91.454	2.564	-0.498	2.694	Y	Y	N	N	N	Y	1.266	N	Y	2.651	Y	
5	510.719	6.728	6	0	-	5.534	0.943	89.038	2.416	-0.588	2.679	Y	Y	Y	N	N	N	1.38	N	Y	2.574	Y	
6	538.773	75.082	6	0	-	5.572	0.961	87.905	2.319	-0.599	2.671	Y	Y	N	N	N	N	1.383	N	N	2.494	Y	
7	566.827	82.884	6	0	-5.36	0.951	87.246	2.135	-0.657	2.662	Y	Y	N	N	N	N	N	1.479	N	N	2.409	Y	
8	546.699	70.062	6	0	-	4.834	1.053	88.82	1.427	-0.694	2.718	N	Y	N	N	N	N	1.324	N	N	2.526	Y	
9	462.542	62.646	6	3	-	5.062	0.289	99.653	-0.052	-1.044	-1.6	N	Y	N	Y	N	Y	-0.285	N	Y	1.829	Y	
10	276.2	14.742	7	5	2.935	0.298	63.936	1.75	-1.427	3.154	N	N	Y	N	N	N	N	0.284	N	Y	2.303	N	
11	292.199	11.798	8	6	-	2.973	0.109	68.557	0.923	-1.589	3.625	N	N	Y	N	N	N	0.196	N	N	2.322	N	
12	509.643	6.104	7	2	-5.95	0.691	82.518	1.146	-1.166	2.345	N	Y	N	Y	N	N	Y	0.787	N	N	2.471	Y	
13	481.589	53.238	7	2	-	5.532	0.715	81.068	1.028	-1.063	2.329	N	Y	N	Y	N	N	0.664	Y	Y	2.458	Y	
14	495.616	57.139	7	2	-	5.702	0.701	81.93	0.952	-1.131	2.313	N	Y	N	N	N	Y	0.759	N	N	2.46	N	
15	539.669	54.649	8	3	-	5.676	0.524	77.53	0.79	-1.368	3.168	N	N	N	Y	N	N	Y	0.754	N	N	2.415	Y
16	511.615	46.847	8	3	-	5.395	0.579	71.082	0.725	-1.265	3.191	N	N	N	Y	N	N	Y	0.595	N	N	2.377	Y
17	640.818	51.532	10	5	-	3.576	0.523	62.163	1.004	-1.516	3.361	N	Y	N	N	N	N	Y	0.669	N	N	2.457	Y
18	464.558	62.947	6	4	-	4.176	0.234	90.397	-0.792	-1.137	1.827	N	Y	N	Y	Y	N	N	-0.045	N	Y	2.079	Y

Abbreviation: BBB=blood brain barrier, CNS=central nervous system, CYP= cytochrome P450, OCT2= Organic cationic transporter2, Y=Yes, N=No

A molecular mass under 500 Daltons, no more than 10 hydrogen bond acceptors, a maximum of five hydrogen bond donors, and a LogP value below 5, indicating moderate lipophilicity^[81]. Typically, a compound is regarded as a viable candidate for oral administration when it breaches no more than two of these parameters^[82]. Among the 18 screened compounds, only compound **120** was found to violate Lipinski's Rule of Five.

The pkCSM platform evaluates compound absorption using predictive metrics such as permeability across Caco-2 cell layers, water solubility, and human intestinal absorption (%HIA)^[13]. Among these, %HIA is particularly informative as it reflects the extent of passive diffusion of neutral species in aqueous environments, offering a broader physiological relevance compared to membrane-specific Caco-2 data^[83]. While Caco-2 permeability and solubility thresholds (e.g., >0.9 and -5 to -1 log mol/L, respectively) are useful for preliminary screening, %HIA exceeding 70% is considered a more decisive indicator of good intestinal uptake within the pkCSM framework^[13]. In this study, compound selection prioritized %HIA to ensure retention of candidates with favorable absorption profiles, even if other parameters were suboptimal. Based on %HIA alone, compounds **14, 15, 41, 62-65, 74, 93, 115-119**, and **127** demonstrated good intestinal absorption. Among these, compounds 14, 15, and 74 also met all three absorption criteria, including Caco-2 permeability and solubility thresholds.

Understanding drug distribution is essential in antimalarial development. A high steady-state volume of distribution (Vdss) indicates tissue over plasma localization, while high BBB and CNS permeability suggest potential brain access^[13]. In severe

cases such as cerebral malaria, CNS distribution becomes critical, as Plasmodium-infected erythrocytes can adhere to brain endothelium and form rosettes with uninfected cells^[84]. This leads to microvascular obstruction, reduced perfusion, and oxygen deprivation, which may contribute to blood-brain barrier disruption and vascular leakage^[85]. High tissue distribution is defined as $\log Vdss > 0.45$, while BBB and CNS permeability are considered favorable when $\log BB > 0.3$ and $\log PS > -2$. Compounds **62-65, 74, 107**, and **114-120** exhibited high tissue distribution. Although none showed strong BBB penetration, three compounds (**14, 41**, and **93**) were predicted to cross the CNS barrier, making them promising candidates for cerebral malaria applications.

Metabolism primarily occurs in the liver with the help of cytochrome P450 (CYP) enzymes, which catalyze diverse reactions that significantly influence the biological activity of both xenobiotics, such as drugs and environmental chemicals, and endobiotics like fatty acids, steroids, prostaglandins, and bile acids^[86]. The pkCSM platform predicts whether compounds act as substrates or inhibitors of key CYP isoforms, including CYP2D6 and CYP3A4 (substrates), as well as CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 (inhibitors). Most compounds in this study showed minimal interaction as CYP2D6 substrates or inhibitors, while several were predicted to inhibit CYP1A2, CYP2C19, and CYP2C9. Notably, compounds **63, 74, 93**, and **115-120** exhibited CYP3A4 inhibition, which may affect metabolic clearance and raise the potential for drug-drug interactions.

The pkCSM platform assesses excretion profiles by estimating total clearance and

interactions with the Organic Cation Transporter 2 (OCT2). Clearance values among xanthone derivatives range from 1.818 to 2.651 log mL/min/kg, indicating varying elimination rates that directly affect drug half-life and dosing frequency [87]. OCT2, a membrane transporter located in hepatocytes, enterocytes, and renal proximal tubule cells^[80], plays a key role in mediating the uptake and excretion of cationic compounds^[88]. Its influence on drug disposition depends on whether a compound serves as a substrate or inhibitor^[13]. In this study, only compound **116** was predicted to interact with OCT2 as a substrate.

The toxicity profile of xanthone derivatives was assessed using three key parameters: the Ames test, oral acute toxicity in rats (LD₅₀), and hepatotoxicity prediction^[13]. LD₅₀ values ranged from 1.818 to 2.651 mol/kg, indicating a moderate level of acute toxicity across the compounds. The Ames assay, a widely accepted bacterial reverse mutation test, is commonly employed to identify mutagenic potential through short-fragment DNA damage^[89]. Hepatotoxicity evaluation was included due to the high incidence of drug-induced liver injury (DILI), a leading cause of clinical trial failure and discontinuation of drug development^[90]. Among the tested compounds, only **114** and **117** satisfied both mutagenicity and hepatotoxicity safety criteria.

Taken together, these findings emphasize that clinically meaningful thresholds such as IC₅₀ < 1 μM provide a rational benchmark for prioritizing candidates, while safety-critical predictions, including hepatotoxicity and CYP3A4 inhibition, remain decisive filters in early development. Synthetic derivatives bearing alkylamino side chains consistently outperformed natural prototypes like α-mangostin, underscoring the value of structural modification in balancing potency

and tolerability. Although pkCSM offers reliable first-pass insights, its predictive scope is inherently limited and requires experimental validation to confirm pharmacokinetic and toxicity outcomes^[14]. Importantly, the strong intestinal absorption and Lipinski compliance predicted for Compound 117 link favorable pharmacokinetics directly to drug-likeness, supporting its designation as a promising lead for further optimization.

CONCLUSION

This study successfully integrated a systematic review with computational profiling to filter the xanthone chemical space. Compound 117 was identified as the premier candidate, supported by high-quality primary data and a superior in silico safety profile. The use of a customized, stringent quality assessment tool ensures that this recommendation is based on the most reliable evidence available. Compound 117 represents a prioritized scaffold for immediate in vivo optimization.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENT

The author would like to express gratitude to Faculty of Pharmacy, Universitas Gadjah Mada who have provided guidance in the completion of this research article.

REFERENCES

- 1 WHO. *World malaria report 2024: addressing inequity in the global malaria response*. World Health Organization: Geneva, 2024. <https://www.wipo.int/amc/en/media/0Ahttps://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023>.

2 Balikagala B, Fukuda N, Ikeda M, Katuro OT, Tachibana S-I, Yamauchi M *et al.* Evidence of Artemisinin-Resistant Malaria in Africa. *New England Journal of Medicine*. 2021; 385: 1163–1171.

3 Mihreteab S, Platon L, Berhane A, Stokes BH, Warsame M, Campagne P *et al.* Increasing Prevalence of Artemisinin-Resistant HRP2-Negative Malaria in Eritrea. *New England Journal of Medicine*. 2023; 389: 1191–1202.

4 Conrad MD, Asua V, Garg S, Giesbrecht D, Niaré K, Smith S *et al.* Evolution of Partial Resistance to Artemisinins in Malaria Parasites in Uganda. *New England Journal of Medicine*. 2023; 389: 722–732.

5 White NJ, Chotivanich K. Artemisinin-resistant malaria. *Clin Microbiol Rev*. 2024; 37. doi:10.1128/cmr.00109-24.

6 Ojha H, Sethi M, Kakkar R, Sharma M, Saini M, Pathak M. Chem-bioinformatic approach for drug discovery. In: *Chemoinformatics and Bioinformatics in the Pharmaceutical Sciences*. Elsevier, 2021, pp 207–243.

7 Chaniad P, Chukaew A, Na-ek P, Yusakul G, Chuaboon L, Phuwajaroanpong A *et al.* In vivo antimalarial effect of 1-hydroxy-5,6,7-trimethoxyxanthone isolated from *Mammea siamensis* T. Anders. flowers: pharmacokinetic and acute toxicity studies. *BMC Complementary Medicine and Therapies*. 2024; 24. doi:10.1186/s12906-024-04427-z.

8 Rifaldi, Fadlan A, Fatmawati S, Purnomo AS, Ersam T. Antiplasmodial and anticancer activities of xanthones isolated from *Garcinia bancana* Miq. *Natural Product Research*. 2024; 38: 885–890.

9 Badiali C, Petruccelli V, Brasili E, Pasqua G. Xanthones: Biosynthesis and Trafficking in Plants, Fungi and Lichens. *Plants*. 2023; 12. doi:10.3390/plants12040694.

10 Chaijaroenkul W, Na-Bangchang K. The in vitro antimalarial interaction of 9-hydroxykalabaxanthone and α -mangostin with mefloquine/artesunate. *Acta Parasitologica*. 2015; 60: 105–111.

11 Lyles JT, Negrin A, Khan SI, He K, Kennelly EJ. In vitro antiplasmodial activity of benzophenones and xanthones from edible fruits of *garcinia* species. *Planta Medica*. 2014; 80: 676–681.

12 Pina JRS, Silva-Silva JV, Carvalho JM, Bitencourt HR, Watanabe LA, Fernandes JMP *et al.* Antiprotozoal and Antibacterial Activity of Ravenelin, a Xanthone Isolated from the Endophytic Fungus *Exserohilum rostratum*. *Molecules*. 2021; 26: 3339.

13 Pires DE V., Blundell TL, Ascher DB. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. *Journal of Medicinal Chemistry*. 2015; 58: 4066–4072.

14 Batista R, De Jesus Silva Júnior A, De Oliveira AB. Plant-Derived Antimalarial Agents: New Leads and Efficient Phytomedicines. Part II. Non-Alkaloidal Natural Products. *Molecules*. 2009; 14: 3037–3072.

15 Upegui Y, Robledo SM, Gil Romero JF, Quiñones W, Archbold R, Torres F *et al.* In vivo Antimalarial Activity of α -

Mangostin and the New Xanthone δ-Mangostin. *Phytotherapy Research.* 2015; 29: 1195–1201.

16 Kurniawan YS, Harizal H, Yudha E, Gurning K, Pranowo HD, Sholikhah EN *et al.* Anticancer and Antimalarial Assays of Xanthone-Fatty Acid Hybrids: Integrative *<i>In Vitro</i>* and *<i>In Silico</i>* Evaluation. *Indonesian Journal of Chemistry.* 2025; 25: 1244.

17 Chaniad P, Chukaew A, Na-ek P, Yusakul G, Chuaboon L, Phuwajaroanpong A *et al.* In vivo antimalarial effect of 1-hydroxy-5,6,7-trimethoxyxanthone isolated from *Mammea siamensis* T. Anders. flowers: pharmacokinetic and acute toxicity studies. *BMC Complementary Medicine and Therapies.* 2024; 24: 129.

18 Chaniad P, Chukaew A, Payaka A, Phuwajaroanpong A, Techarang T, Plirat W *et al.* Antimalarial potential of compounds isolated from *Mammea siamensis* T. Anders. flowers: in vitro and molecular docking studies. *BMC Complementary Medicine and Therapies.* 2022; 22: 266.

19 Synthesis, Biological Activity, and Molecular Docking Study of Xanthenol and Its Disproportionation Products as Anticancer and Antimalarial Agents. *Makara Journal of Science.* 2024; 28. doi:10.7454/mss.v28i2.2314.

20 Wicaksana F, Wardana FY, Ilmi H, Tumewu L, Widiandani T, Suciati *et al.* Antimalarial activity of caged xanthone isolated compounds from *Cratoxylum sumatranum* stem bark: In vitro and in silico approaches. *Journal of Advanced Pharmaceutical Technology & Research.* 2024; 15: 352–358.

21 Suryanto S, Tumewu L, Ilmi H, Hafid AF, Suciati S, Widyawaruyanti A. Antimalarial activity of Cratoxyarborenone E, a prenylated xanthone, isolated from the leaves of *Cratoxylum glaucum* Korth. *Pharmacia.* 2024; 71: 1–7.

22 Amanatie A, Jumina J, Mustafa M, M H, Kadidae LO, I S. SYNTHESIS OF 2-HIDROXYXANTHONE FROM XANTHONE AS A BASIC MATERIAL FOR NEW ANTIMALARIAL DRUGS. *Asian Journal of Pharmaceutical and Clinical Research.* 2017; 10: 242.

23 Syahri J, Yuanita E, Achromi Nurohmah B, Hizbul Wathon M, Syafri R, Armunanto R *et al.* Xanthone as Antimalarial: QSAR Analysis, Synthesis, Molecular Docking and In-vitro Antimalarial Evaluation. *Oriental Journal of Chemistry.* 2017; 33: 29–40.

24 Auranwiwat C, Laphookhieo S, Rattanajak R, Kamchonwongpaisan S, Pyne SG, Ritthiwigrom T. Antimalarial polyoxygenated and prenylated xanthones from the leaves and branches of *Garcinia mckeaniana*. *Tetrahedron.* 2016; 72: 6837–6842.

25 Heme Polymerization Inhibitory Activities of Xanthone from *G. parvifolia* (Miq) Miq Stem Bark as an Antimalarial Agent. *Asian Journal of Chemistry.* 2013; 25. doi:10.14233/ajchem.2013.12962.

26 Kornsakulkarn J, Saepua S, Srichomthong K, Supothina S, Thongpanchang C. New mycotoxins from the scale insect fungus *Aschersonia*

coffeae Henn. BCC 28712. *Tetrahedron*. 2012; 68: 8480–8486.

27 Zofou D, Kowa TK, Wabo HK, Ngemenya MN, Tane P, Titanji VP. *Hypericum lanceolatum* (Hypericaceae) as a potential source of new anti-malarial agents: a bioassay-guided fractionation of the stem bark. *Malaria Journal*. 2011; 10: 167.

28 Laphookhieo S, Maneerat W, Koysomboon S. Antimalarial and Cytotoxic Phenolic Compounds from *Cratoxylum maingayi* and *Cratoxylum cochinchinense*. *Molecules*. 2009; 14: 1389–1395.

29 Molinar-Toribio E, González J, Ortega-Barría E, Capson TL, Coley PD, Kursar TA *et al*. Antiprotozoal Activity Against *Plasmodium falciparum* and *Trypanosoma cruzi* of Xanthones Isolated from *Chrysochlamys tenuis*. *Pharmaceutical Biology*. 2006; 44: 550–553.

30 Zelefack F, Guilet D, Fabre N, Bayet C, Chevalley S, Ngouela S *et al*. Cytotoxic and antiplasmodial xanthones from *Pentadesma butyracea*. *Journal of Natural Products*. 2009; 72: 954–957.

31 Rifaldi, Fadlan A, Fatmawati S, Purnomo AS, Ersam T. Antiplasmodial and anticancer activities of xanthones isolated from *Garcinia bancana* Miq. *Natural Product Research*. 2024; 38: 885–890.

32 Al-Massarani S, El Gamal A, Al-Musayeib N, Mothana R, Basudan O, Al-Rehaily A *et al*. Phytochemical, Antimicrobial and Antiprotozoal Evaluation of *Garcinia Mangostana* Pericarp and α -Mangostin, Its Major Xanthone Derivative. *Molecules*. 2013; 18: 10599–10608.

33 Azebaze AGB, Dongmo AB, Meyer M, Ouahouo BMW, Valentin A, Nguemfo EL *et al*. Antimalarial and vasorelaxant constituents of the leaves of *Allanblackia monticola* (Guttiferae). *Annals of Tropical Medicine and Parasitology*. 2007; 101: 23–30.

34 Mahabusarakam W, Kuaha K, Wilairat P, Taylor W. Prenylated Xanthones as Potential Antiplasmodial Substances. *Planta Medica*. 2006; 72: 912–916.

35 Upegui Y, Robledo SM, Gil Romero JF, Quiñones W, Archbold R, Torres F *et al*. *In vivo* Antimalarial Activity of α -Mangostin and the New Xanthone δ -Mangostin. *Phytotherapy Research*. 2015; 29: 1195–1201.

36 Azebaze AGB, Meyer M, Valentin A, Nguemfo EL, Fomum ZT, Nkengfack AE. Prenylated xanthone derivatives with antiplasmodial activity from *Allanblackia monticola* Staner L.C. *Chemical and Pharmaceutical Bulletin*. 2006; 54: 111–113.

37 Hay AE, Hélesbeux JJ, Duval O, Labaïed M, Grellier P, Richomme P. Antimalarial xanthones from *Calophyllum caledonicum* and *Garcinia vieillardii*. *Life Sciences*. 2004; 75: 3077–3085.

38 Elfita E, Muharni M, Latief M, Darwati D, Widiyantoro A, Supriyatna S *et al*. Antiplasmodial and other constituents from four Indonesian *Garcinia* spp. *Phytochemistry*. 2009; 70: 907–912.

39 Kelly JX, Winter R, Peyton DH, Hinrichs DJ, Riscoe M. Optimization of xanthones for antimalarial activity: The 3,6-bis- ω -

diethylaminoalkoxyxanthone series. *Antimicrobial Agents and Chemotherapy*. 2002; 46: 144–150.

40 Konyanee A, Chaniad P, Chukaew A, Payaka A, Septama AW, Phuwajaroanpong A *et al*. Antiplasmodial potential of isolated xanthones from *Mesua ferrea* Linn. roots: an in vitro and in silico molecular docking and pharmacokinetics study. *BMC Complementary Medicine and Therapies*. 2024; 24: 1–18.

41 Zakiah M, Syarif RA, Mustofa M, Jumina J, Fatmasari N, Sholikhah EN. In Vitro Antiplasmodial, Heme Polymerization, and Cytotoxicity of Hydroxyxanthone Derivatives. *Journal of Tropical Medicine*. 2021; 2021: 1–11.

42 Dongmo KJJ, Tali MBT, Fongang YSF, Taguimjeu PLKT, Kagho DUK, Bitchagno GT *et al*. In vitro antiplasmodial activity and toxicological profile of extracts, fractions and chemical constituents of leaves and stem bark from *Dacryodes edulis* (Burseraceae). *BMC Complementary Medicine and Therapies*. 2023; 23: 211.

43 Dodean RA, Kelly JX, Peyton D, Gard GL, Riscoe MK, Winter RW. Synthesis and heme-binding correlation with antimalarial activity of 3,6-bis-(ω -N,N-diethylaminoamyoxy)-4,5-difluoroxanthone. *Bioorganic and Medicinal Chemistry*. 2008; 16: 1174–1183.

44 Fotie J, Nkengfack AE, Rukunga G, Tolo F, Peter MG, Heydenreich M *et al*. In-vivo antimalarial activity of some oxygenated xanthones. *Annals of Tropical Medicine and Parasitology*. 2003; 97: 683–688.

45 Likhitwitayawuid K, Phadungcharoen T, Krungkrai J. Antimalarial Xanthones from *Garcinia cowa*. *Planta Medica*. 1998; 64: 70–72.

46 Likhitwitayawuid K, Chanmahasathien W, Ruangrungsi N, Krungkrai J. Xanthones with antimalarial activity from *Garcinia dulcis*. *Planta Medica*. 1998; 64: 281–282.

47 Ignatushchenko M V., Winter RW, Riscoe M. Xanthones as antimalarial agents: Stage specificity. *American Journal of Tropical Medicine and Hygiene*. 2000; 62: 77–81.

48 Dua VK, Ojha VP, Roy R, Joshi BC, Valecha N, Devi CU *et al*. Anti-malarial activity of some xanthones isolated from the roots of *Andrographis paniculata*. *Journal of Ethnopharmacology*. 2004; 95: 247–251.

49 Annang F, Pérez-Victoria I, Pérez-Moreno G, Domingo E, González I, Tormo JR *et al*. MDN-0185, an Antiplasmodial Polycyclic Xanthone Isolated from *Micromonospora* sp. CA-256353. *Journal of Natural Products*. 2018; 81: 1687–1691.

50 Ngouela S, Lenta BN, Noungoue DT, Ngoupayo J, Boyom FF, Tsamo E *et al*. Anti-plasmodial and antioxidant activities of constituents of the seed shells of *Sympodia globulifera* Linn f. *Phytochemistry*. 2006; 67: 302–306.

51 Lannang AM, Louh GN, Lontsi D, Specht S, Sarite SR, Flörke U *et al*. Antimalarial Compounds from the Root Bark of *Garcinia polyantha* Oliv. *The*

Journal of Antibiotics. 2008; 61: 518–523.

52 Lenta B, Kamdem L, Ngouela S, Tantangmo F, Devkota K, Boyom F *et al.* Antiplasmodial Constituents from the Fruit Pericarp of *Pentadesma butyracea*. *Planta Medica*. 2011; 77: 377–379.

53 Marti G, Eparvier V, Litaudon M, Grellier P, Guérin F. A new xanthone from the bark extract of *Rheedia acuminata* and antiplasmodial activity of its major compounds. *Molecules*. 2010; 15: 7106–7114.

54 Pontius A, Krick A, Kehraus S, Brun R, König GM. Antiprotozoal activities of heterocyclic-substituted xanthones from the marine-derived fungus *Chaetomium* sp. *Journal of Natural Products*. 2008; 71: 1579–1584.

55 Mbwambo ZH, Kapingu MC, Moshi MJ, Machumi F, Apers S, Cos P *et al.* Antiparasitic activity of some xanthones and biflavonoids from the root bark of *Garcinia livingstonei*. *Journal of Natural Products*. 2006; 69: 369–372.

56 Portela C, Afonso CMM, Pinto MMM, Lopes D, Nogueira F, do Rosário V. Synthesis and Antimalarial Properties of New Chloro-9 *H*-xanthones with an Aminoalkyl Side Chain. *Chemistry & Biodiversity*. 2007; 4: 1508–1519.

57 LAPHOOKHIEO S, SYERS JK, KIATTANSAKUL R, CHANTRAPROMMA K. Cytotoxic and Antimalarial Prenylated Xanthones from *Cratoxylum cochinchinense*. .

58 Arora G, Chuang Y-M, Sinnis P, Dimopoulos G, Fikrig E. Malaria: influence of *Anopheles* mosquito saliva on Plasmodium infection. *Trends in Immunology*. 2023; 44: 256–265.

59 Tebben K, Dia A, Serre D. Determination of the Stage Composition of *Plasmodium* Infections from Bulk Gene Expression Data. *mSystems*. 2022; 7. doi:10.1128/msystems.00258-22.

60 Budodo R, Mandai SS, Bakari C, Seth MD, Francis F, Chacha GA *et al.* Performance of rapid diagnostic tests, microscopy, and qPCR for detection of Plasmodium parasites among community members with or without symptoms of malaria in villages located in North-western Tanzania. *Malaria Journal*. 2025; 24: 115.

61 Mohan I, Kodali NK, Chellappan S, Karuppusamy B, Behera SK, Natarajan G *et al.* Socio-economic and household determinants of malaria in adults aged 45 and above: analysis of longitudinal ageing survey in India, 2017–2018. *Malaria Journal*. 2021; 20: 306.

62 Xie SC, Ralph SA, Tilley L. K13, the Cytostome, and Artemisinin Resistance. *Trends in Parasitology*. 2020; 36: 533–544.

63 Ward KE, Fidock DA, Bridgford JL. *Plasmodium falciparum* resistance to artemisinin-based combination therapies. *Current Opinion in Microbiology*. 2022; 69: 102193.

64 Gaudeul M, Sweeney P, Munzinger J. An updated infrageneric classification of the pantropical species-rich genus *Garcinia* L. (Clusiaceae) and some insights into the systematics of New Caledonian species, based on molecular and morphological evidence. *PhytoKeys*. 2024; 239: 73–105.

65 Remali J, Sahidin I, Aizat WM. Xanthone Biosynthetic Pathway in Plants: A Review. *Frontiers in Plant Science*. 2022; 13. doi:10.3389/fpls.2022.809497.

66 Pinto MMM, Palmeira A, Fernandes C, Resende DISP, Sousa E, Cidade H *et al.* From Natural Products to New Synthetic Small Molecules: A Journey through the World of Xanthones. *Molecules*. 2021; 26: 431.

67 Basilico N, Pagani E, Monti D, Olliari P, Taramelli D. A microtitre-based method for measuring the haem polymerization inhibitory activity (HPIA) of antimalarial drugs. *Journal of Antimicrobial Chemotherapy*. 1998; 42: 55–60.

68 Arnold MSJ, Engel JA, Chua MJ, Fisher GM, Skinner-Adams TS, Andrews KT. Adaptation of the [3 H]Hypoxanthine Uptake Assay for In Vitro -Cultured Plasmodium knowlesi Malaria Parasites. *Antimicrobial Agents and Chemotherapy*. 2016; 60: 4361–4363.

69 Sunghanghwa Y, Phuwacharoenpong A, Punsawad C, Septama AW, Jaisi A. Plasmodium falciparum Lactate Dehydrogenase Inhibitory Activities of Pomegranate and Mangosteen Extracts and their Major Constituents. *Revista Brasileira de Farmacognosia*. 2024; 34: 1156–1165.

70 Campo JJ, Aponte JJ, Nhabomba AJ, Sacarlal J, Angulo-Barturen I, Jiménez-Díaz MB *et al.* Feasibility of Flow Cytometry for Measurements of Plasmodium falciparum Parasite Burden in Studies in Areas of Malaria Endemicity by Use of Bidimensional Assessment of YOYO-1 and Autofluorescence. *Journal of Clinical Microbiology*. 2011; 49: 968–974.

71 Rieckmann KH, Campbell GH, Sax LJ, Ema JE. Drug sensitivity of plasmodium falciparum. An in-vitro microtechnique. *The Lancet*. 1978; 311: 22–23.

72 Ryley JF, Peters W. The antimalarial activity of some quinolone esters. *Annals of Tropical Medicine & Parasitology*. 1970; 64: 209–222.

73 Ursing J, Johns R, Aydin-Schmidt B, Calçada C, Kofoed P-E, Ghanchi NK *et al.* Chloroquine-susceptible and -resistant Plasmodium falciparum strains survive high chloroquine concentrations by becoming dormant but are eliminated by prolonged exposure. *Journal of Antimicrobial Chemotherapy*. 2022; 77: 1005–1011.

74 Nogueira CR, Lopes LMX. Antiplasmodial natural products. *Molecules*. 2011; 16: 2146 – 2190.

75 Matz JM, Kooij TWA. Towards genome-wide experimental genetics in the in vivo malaria model parasite Plasmodium berghei. *Pathogens and Global Health*. 2015; 109: 46–60.

76 Kelly JX, Winter R, Riscoe M, Peyton DH. A spectroscopic investigation of the binding interactions between 4,5-dihydroxyxanthone and heme. *JOURNAL OF INORGANIC BIOCHEMISTRY*. 2001; 86: 617–625.

77 Singh S. Preclinical Pharmacokinetics: An Approach Towards Safer and Efficacious Drugs. *Current Drug Metabolism*. 2006; 7: 165–182.

78 Daoud NE-H, Borah P, Deb PK, Venugopala KN, Hourani W, Alzweiri M

et al. ADMET Profiling in Drug Discovery and Development: Perspectives of In Silico, In Vitro and Integrated Approaches. *Current Drug Metabolism*. 2021; 22: 503–522.

79 Kar S, Leszczynski J. Open access in silico tools to predict the ADMET profiling of drug candidates. *Expert Opinion on Drug Discovery*. 2020; 15: 1473–1487.

80 Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Advanced Drug Delivery Reviews*. 1997; 46: 3–25.

81 Lohit N, Singh AK, Kumar A, Singh H, Yadav JP, Singh K et al. Description and In silico ADME Studies of US-FDA Approved Drugs or Drugs under Clinical Trial which Violate the Lipinski's Rule of 5. *Letters in Drug Design & Discovery*. 2024; 21: 1334–1358.

82 Nhlapho S, Nyathi M, Ngwenya B, Dube T, Telukdarie A, Munien I et al. Druggability of Pharmaceutical Compounds Using Lipinski Rules with Machine Learning. *Sciences of Pharmacy*. 2024; 3: 177–192.

83 Abraham MH. Human intestinal absorption - Neutral molecules and ionic species. *Journal of Pharmaceutical Sciences*. 2014; 103: 1956–1966.

84 Adalid-Peralta L, Sáenz B, Fragoso G, Cárdenas G. Understanding host–parasite relationship: the immune central nervous system microenvironment and its effect on brain infections. *Parasitology*. 2018; 145: 988–999.

85 Pal P, Daniels BP, Oskman A, Diamond MS, Klein RS, Goldberg DE. Plasmodium falciparum Histidine-Rich Protein II Compromises Brain Endothelial Barriers and May Promote Cerebral Malaria Pathogenesis. *mBio*. 2016; 7. doi:10.1128/mBio.00617-16.

86 Rendic S. Summary of information on human CYP enzymes: human P450 metabolism data. *Drug Metabolism Reviews*. 2002; 34: 83–448.

87 Pichai E, Lakshmanan M. Drug Elimination. In: Raj Gerard Marshall and Raveendran R (ed). *Introduction to Basics of Pharmacology and Toxicology: Volume 1: General and Molecular Pharmacology: Principles of Drug Action*. Springer Singapore: Singapore, 2019, pp 117–129.

88 Jonker JW, Schinkel AH. Pharmacological and Physiological Functions of the Polyspecific Organic Cation Transporters: OCT1, 2, and 3 (SLC22A1-3). *The Journal of Pharmacology and Experimental Therapeutics*. 2004; 308: 2–9.

89 Petkov PI, Ivanova H, Schultz TW, Mekenyan OG. Criteria for assessing the reliability of toxicity predictions: I. TIMES Ames mutagenicity model. *Computational Toxicology*. 2021; 17: 100143.

90 Blomme EAG, Yang Y, Waring JF. Use of toxicogenomics to understand mechanisms of drug-induced hepatotoxicity during drug discovery and development. *Toxicology Letters*. 2009; 186: 22–31.