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Abstract

Both static and dynamic adaptive neural networks have been broadly utilized in mathematical
modeling and numerical analysis. This study aimed to enhance the accomplishment of Dynamic
Neural Networks (DNN) models by applying wavelet functions as activation functions. Research
that models and forecasts the intensity of solar radiation in Mataram City shows that combining B-
Spline and Morlet wavelet activation functions can significantly increase the DNN model
performance. Wavelet-DNN (W-DNN) was modeled with an identical architecture; the best
showed the increase in the model achievement (0.7596 points for in-sample and 0.8502 points
for out-sample data). Mainly for out-sample data, the model's performance using the W-DNN*
intervention model increased by 4.0492 points.

Keywords: Performance optimization of the model, adaptive neural networks, DNN Model,
Wavelet, Solar Radiation.

1. Introduction

Some aspects researchers consider as the basis for using the neural network model (NN) as an
analytical tool include having adaptive abilities, learning algorithms by self, generalization abilities,
and solving complex and complicated nonlinear problems [1]. Based on the time variable, the
applications of the NN models can be divided into two categories, namely, static and dynamic
neural network (SNN and DNN) models. The SNN model is based on a fixed time (static), while
the DNN model develops according to changes in time (dynamic).

In terms of modeling solar radiation intensity, many studies have investigated the scatter scheme
of the intensity of solar radiation in different locations using various methods and approaches.
The other modeling techniques have been implemented by a combination method of empirical
techniques and machine learning [2], deep learning model [3], six machine learning algorithms
for daily global solar radiation and air temperature [4], multivariate time series based on NN
method [5], ensemble artificial intelligence [6], and deep learning approach [7]. Meanwhile, those
based on (static) neural network models include the ANN model with different learning algorithms
[8], the modeling of solar radiation intensity in Mataram City, the hybrid wavelet-based model in
Lombok Island, and SNN [9].

Introduced around 2000, the development and application of the DNN is a relatively new model
after Warren McCulloch and Walter Pitts proposed the (static) neural network models in 1943
[10]. In its development, the DNN model has been applied to different research to address
problems, including weather data forecasting [11], Zika virus risk forecasting [12], Time-varying
inner wall temperature prediction [13], VGF crystal growth process forecast [14], diagnostic and
detection fault [15], and wastewater effluent quality prediction [16].

The implementation of a DNN model using a recurrent neural network (EIman and Jordan) has
been carried out by [11] to predict weather patterns, especially temperature, rainfall, and solar
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radiation intensity in Anglesey (North Wales, UK). Similar research was carried out by [17] using
meteorological data in the form of wind speed, wind direction, air humidity, air pressure, and
rainfall to model and predict the intensity of solar radiation in Mataram City, West Nusa Tenggara
using the DNN model to produce significant forecasts.

Combining two or more methods and models into one model to solve a problem is called a hybrid
model. In practice, several studies show that the hybrid model shows significant results in terms
of effectiveness and efficiency. In particular, research in [9] showed that the Wavelet Neural
Network Model (static) could effectively model and estimate solar intensity. Furthermore, [17] has
successfully modeled and predicted solar radiation intensity using the DNN model.

Based on the advantages of the hybrid model, this research combines the wavelet method and
the neural network model to develop a hybrid model called Wavelet-DNN (W-DNN) using the
neural network model as the core model and the wavelet method as a tool to optimize it. The W-
DNN model is used to model and predict the intensity of solar radiation as a health indicator,
especially in Mataram City.

2. Research Methods

2.1. Data and Data Organization

This study used the solar radiation data of Mataram City from June 2018 until May 2019, derived
from the Environment and Forestry Agency, West Nusa Tenggara Province (Figure 1).
Meteorological information was utilized, including wind speed, humidity, air temperature, air
pressure, and rainfall as predictor data. Next, solar radiation data was used in response to
predictor data.
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Figure 1. The intensity of solar radiation data of Mataram City from June 2018 until May 2019

Descriptively, the intensity of solar radiation data of Mataram City is given by several parameters,
namely mean, max, min, and standard deviation of data, 55.3108, 135.3750, 0.00, and 14.2272,
respectively.

Solar radiation intensity as an environmental parameter is affected by various meteorological
specifics, including wind speed, air pressure, humidity, and rainfall. Solar radiation intensity can
also be analyzed using time series data based on previous solar radiation intensities. Based on
this situation, the intensity of solar radiation can be formulated as follows:

y(0) = f (X (1), %, (1), X3 (t), X, (1), X, (t), y(t —k)), for some k € N. (1)
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Variable X (t), 1=12,---,5 respectively denotes wind speed, humidity, air temperature, air

pressure, and rainfall at time t, and variable y represents solar radiation's intensity.
The research data consisted of 325 data sets into two subsets, namely 280 (86.15%) training (in-
sample) data and 45 (13.85%) testing (out-sample) data.

2.2. The Architecture of the Wavelet-Dynamic Neural Network (W-DNN) Model

The W-DNN architecture we propose consists of 6 layers: two initial layers, three hidden layers,
and one output layer (Figure 2). The initial layer shows the data pre-processing process using the
normalization method. The hidden layer depicts the data aggregation and activation process, and
the output layer represents the hidden layer output aggregated into the model output. This W-
DNN architecture was developed in our previous research [17].

2.3.Activation Function

This research model predicts solar radiation intensity as the impact of various meteorological and
rainfall variables. The DNN Model uses the wavelet activation function, called the Wavelet-
Dynamic Neural Network (W-DNN). The wavelet functions used are the B-spline Wavelet and the
Morlet Wavelet.

The successful application of a neural network in data analysis depends on selecting the
activation function used in the model. There were two types of wavelet functions used in this
study, namely the B-Spline Wavelet [18] and the Morlet Wavelet, shown respectively by the
following equations for any variable x:

von . Ap™ ~ —(2x -1)?
w"(X) = —m cos(2xf,(2x - 1)) exp[zafv‘ e 1)} )

n denotes the order of the B-spline wavelet, a constant b =0.657066, f, =0.409177, and
o2 =0.561145, and

v (X) =exp(-x") cos(5x) ®)
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Figure 2. The proposed W-DNN architecture
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2.4. Feed-Forward W-DNN procedures

The W-DNN feed-forward procedure offered in this research is basically on the architecture in
Figure 2 and is provided through the following steps.

The 15t Layer: the input data is separated into two categories. The first input category,
meteorological variables, including wind speed, temperature, humidity, air pressure, and rainfall,
consists of m; data. The second input group comprises previous solar radiation data (lags)
consisting of Mz data.

The 2" Layer: the input data was transformed through normalization methods by the following
rules:

— X k — X min (4)
k - ' "
Xmax - X min
where X', X ,and X . correspondingly, indicate the k -th, the minimum, and the maximum

values from the primary data set. The number of neurons was identical to the 1st Layer, namely
m=m, +m, neuron.

The 3-rd Layer: If C is the number of classes of the input data, then each input data
X, K=12,---,m in the 2-nd Layer was aggregated by the rule:

m my
Uj=>WyX;;j=12---,C dan U?=> W1, X,; j=12:-C ®)
i=1 k=1

where W1, dan W2, respectively represent weight matrices m,xC dan m,xC , with
i=12,---,m, k=12,---,m,, dan j=1,2,---,C. The number of neurons in this Layer
was 2C neuron.

The 4-th Layer: The weighted U} dan sz for j=1,2,---,C was energized using wavelet
functions, such as Wavelet B-Spline (Equation 2) and Wavelet Morlet (Equation 3).

The 5-th Layer: The activation result of U} danU? | let le, j=142,---,Cand V/,j=12C

was totaled again with weights W% and W32“, i=12---,Cand j=12:--,C using the equations
as follows:
C
pi (\/Jl) = ZW31ijjli k :L 21 T C (68)
=1
2 2 < 2
pk (\/J ) =ZW32ijj ’ K :1i2""aC' (Gb)
=1
then
pk(Vj) =X pi(vjl)-l_az X plf(vjz)' K, J =12.--,C (6¢)

for some constants ¢, and «,.

The 6-th Layer: The terminal outputs of the W-DNN model are as the following:

C
Type a: y=ax) W4p, + B, k=12,,C (7a)
k=1
C
Type b: y:axZMax(W4)pk+ﬂ, k=12,--,C (7b)
k=1
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for fundamental constants a and b.

2.5. Learning Parameters Optimization

Optimizing the parameter was executed in the backward procedures of the W-DNN model. The
optimized parameters contained weights W1, W2, W31, W32, and W4 . Optimizing the
parameter utilizing the momentum gradient descent, minimizing the cost function:

2

:%i( y) (®)

N indicates the number of data, Yi and y}’ correspondingly shows the output of the offered
model and the j-th objective data, j=1,2, ..., N.
The optimizing procedure was accomplished using the partial differential formulas as follows:

21l dy ap V' au!

=TT (9)
AW, dy op ovViaut aw,
) a_Jﬂ%avzauz 10
oW, oy ap, VZaU’ AW,
01 _ 3oy op v a
oW, Oy ap V' oW,
8 8oy op ov? 12
OW,, Oy p AV’ oW,
) Aoy op w3
8W4 6’y op oW 4
Moreover, the procedure to improve weight used:
Wi;; =Wi;; +dW, k=1,2,3,4. (14)
where,
dW = mxWig; —77, x (L—m) x oWk (15)

m, 7, , 8Wkij with k =1,2,3,4 correspondingly representing the momentum parameter,

learning rate, and weight change Wk, k =1,2,3,4 determined by Equations (9)-(13).

3. Results and Discussion

The Wavelet-Dynamics Neural Network (W-DNN) model proposed in this research is divided into
two types: the Type-a Model, the W-DNN Model with output aggregation using weighted
coefficients, and the Type-b Model, the W-DNN Model with output aggregation using the
maximum coefficient.
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3.1. W-DNN Models with Weighted Coefficients (Type-a)

Referring to equation (7a) and numerical simulation using the trial-and-error method, data
modeling of solar radiation intensity that is influenced by meteorological data and rainfall using
the DNN Wavelet Model with weighted coefficients is calculated by the following equations:

7
y =1.035x Y Wax p, +0.2492 (16)
k=1

Where

P, =17.178 x p, (k,t) + 1.785 x p, (k.t)

Refer to Equations (5c¢), and pl(k,t) and the B-Spline Wavelet Equation (2), and P, (k,t) refer

to the Morlet Wavelet Equation (3) give the result with an accuracy based on RMSE of 13.5306
with a graph as shown in Figure 3. Referring to equation (16) with the same indicator, namely
RMSE, the model's accuracy on testing data (out-sample) is 17.6820.
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Figure 3. Comparison between actual data of solar radiation intensity (blue) and W-DNN model
(red)

Descriptively, the W-DNN model implementation to the intensity of solar radiation data influenced
by meteorological and rainfall data can be seen in Table 1. Based on Figure 3, it can be seen that
the W-DNN model result curve tends to be close to the average and shows that the data pattern
produced by the W-DNN model is generally similar to the characteristics of the actual data,
especially in out-sample data. In this case, it can be seen that when the actual data graph
increases or decreases, the model data also shows the same behavior. The statistics data in
Table 1 reinforce that the average W-DNN model has a difference of 0.3663 points below the
average actual data.

Table 1. The W-DNN model's performance on solar radiation intensity is determined by
meteorological and rainfall variables.

Statistical Indicator
Data Min Mean Max

Model Actual Model Actual Model Actual

Performa
(RMSE)

Training 42.0446 0 56.6543 57.0206 61.1037 135.3750 13.5306
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Testing 10.9818 2.3077 47.7559 48.1202 56.4109 71.5429 17.6820
Testing* 14.8941 2.3077 47.1193 48.1202  54.6967 71.5429 16.3160

* Intervention Model

By paying attention to the patterns formed, especially in the out-sample data, it can be seen that
the model patterns are consistently below the actual data. If the constant factor can be viewed as
an exogenous factor, and the addition of a constant value in equation (16) of 0.0850 points is a
form of exogenous factor intervention, and other parameters are considered stable, then equation
(16) given as below:

7
y :1.035><ZW4>< p, +0.3342 17)

k=1

Applying equation (17) to the testing data (out sample) increases the model's performance for
forecasting the intensity of solar radiation; initially, the RMSE was 17,680 to 16.3169. Graphically,
the graph quality of testing data (out sample) is shown in Figure 4.
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Figure 4. Graphical comparison between actual data of solar radiation intensity (blue) and W-
DNN model (red) and improvement of W-DNN model curve on the testing data (green).

If observed specifically for the testing data, Figure 5 shows that the W-DNN Model given by
equation (17), called the W-DNN* Model, with a green graph, is more accurate than the original
W-DNN Model with a red graph. This is statistically proven by the RMSE indicators of 16.3160
and 17.6820, respectively.
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Figure 5. Graphic comparison of solar radiation intensity for testing data (out sample) between
actual data (blue), W-DNN model data (red), and W-DNN+ intervention model
(green)
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3.2.  W-DNN Model with Maximum Coefficient (Type-b)

Referring to equation (7b) and numerical simulation using the trial-and-error method, data
modeling of solar radiation intensity that is influenced by meteorological data and rainfall uses the
DNN Wavelet Model with the maximum coefficient given by the following equation:

7
y =3.595x z MaX{W 4} x p, +1.9999 (18)
k=1

where

P, =0.8078x p,(k,t) + 9.485 x p,(k,t)

Refer to equation (6c¢), and pl(k,t) refer to the B-Spline wavelet function in equation (2), and

P, (k,t) refer to the Morlet wavelet function in equation (3), which gives results with RMSE-

based accuracy of 13.5306 with a graph as shown in Figure 6. Referring to equation (18) with the
same indicator, namely RMSE, the model accuracy for the testing data (out-sample) is obtained
at 17.5422.
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Figure 6. Graphical comparison of actual data on solar radiation intensity (blue) with the W-
DNN model (red)

Descriptively, the application of the W-DNN model with maximum coefficients on solar radiation
intensity data influenced by meteorological and rainfall data can be seen in Table 2. Figure 6
indicates that the yield curve of the W-DNN model with maximum coefficients tends to be close
to the average and shows that the data pattern produced by the W-DNN model is generally similar
to the characteristics of the actual data. In this case, it can be seen that when the actual data
graph increases or decreases, the model data also shows the same behavior. This is reinforced
by the statistical data in Table 2, which shows that the average W-DNN model has a difference
of 0.0945 points above the average actual data.

Similar to the type-a model, paying attention to the patterns formed in the out-sample data shows
that the model pattern is consistently below the actual data. If the constant factor is seen as an
exogenous factor, and the addition of the constant value in equation (18) of 0.0850 points as a
form of exogenous factor intervention, and other parameters are considered stable, equation (18)
given as below:

7
y=3.595xZMax{W4}x p, +2.1491 (19)
k=1

157



LONTAR KOMPUTER VOL. 14, NO. 3 DECEMBER 2023 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2023.v14.i03.p03 e-ISSN 2541-5832
Accredited Sinta 2 by RISTEKDIKTI Decree No. 158/E/KPT/2021

Applying equation (19) to the testing data (out sample) increases the model's performance for
forecasting the intensity of solar radiation, from an RMSE of 17.5422 to 14.3432. The increase in
graphical performance on the testing data (out sample) is shown in Figure 7.

Table 2. W-DNN model performance in modeling the intensity of solar radiation determined by
meteorological and rainfall variables

Statistical Indicator
Data Min Mean Max

Model Aktual Model Aktual Model Aktual

Performa
(RMSE)

Training 42.0446 0 57.1151 57.0206 105.5355 135.3750 13.9380
Testing 25.5104 2.3077 38.0180 48.1202  55.1116 71.5429 17.5422
Testing* 35.8403 2.3077 48.3479 48.1202  65.4415 71.5429 14.3432

* Intervention Model
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Figure 7. Graphical comparison of actual data between solar radiation intensity (blue) and the W-
DNN model (red) and improvement of the W-DNN model curve on the testing data
(green).

If observed specifically for the testing data, Figure 8 shows that the W-DNN Model given by
equation (19), called the W-DNN* model, with a green graph, is more accurate than the original
W-DNN Model with a red graph. This is statistically proven by the RMSE indicators of 14.3432
and 17.5422, respectively.
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Figure 8. Graphical comparison of solar radiation intensity for testing data (out sample)
between actual data (blue), W-DNN model data (red), and W-DNN*
intervention model (green)

Referring to the research conducted by [17], using the activation function from the wavelet
function family improves the performance of the DNN model both for training data and testing
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data (see Table 3). Performance comparison between the DNN and W-DNN models is shown in
Table 3 below.

Table 3. Comparison of the DNN Model and the W-DNN Model

Model Performance Remarks:
Model In Sample  Out Sample  Type I-a DNN Model: binary sigmoid activation
Data Data function and output aggregation process
Type I-a DNN Model 14.2835 18.4005 using weighted function.
Type I-b DNN Model 14.2802 18.7382 Type I-b DNN Model: binary sigmoid type
Type ll-a DNN Model 14.5490 18.6353 activation  function and the output
Type Il-b DNN Model 14.2802 18.3924 aggregation process using the maximum
Type a W-DNN Model 13.5306 17.6820 function. _
Type a W-DNN* Model 16.3160 Type Il-a DNN Model: hyperbolic tangent type
Type b W-DNN Model 13.9380 17.5422 activation functlon and output aggregation
Type b W-DNN* Model 14.3432 process using weighted function.

Type II-b DNN Model: hyperbolic tangent type
activation function and output aggregation
process using maximum function.

Type-a Model W-DNN: the output aggregation
process uses a weighted function.

Type-b Model W-DNN: aggregation process
output using maximum function.

W-DNN* Model: W-DNN model with an
intervention coefficient

Based on Table 3, it can be seen that using the activation function from the wavelet function family
can improve the performance of the DNN model, both for training data and testing data. For in-
sample data, the W-DNN model with output values calculated using input aggregation using
weighted coefficients tends to be better than the aggregation model using the maximum
coefficient. As for the out-sample data, the W-DNN model with output values calculated using
input aggregation using maximum coefficients tends to be better than the aggregation model
using weighted coefficients. For training data, RMSE Model W-DNN Type A and Type B are
13.5306 and 13.9380, respectively. As for the testing data, RMSE Model Type A and Type B were
17.6820 and 17.5422, respectively. These results align with research conducted by [9] and [17].

The performance of the W-DNN Model, especially for testing data, can be improved by providing
intervention to the W-DNN Model, both Type A and Type B, by adjusting the constant values in
the model. For Type A, adding a constant value of 0.0850 points causes an increase in model
performance of 1.366, from an RMSE of 17.6820 to 16.3160. Whereas for Type b, adding a
constant value of 0.1492 points causes an increase in model performance of 3.199, from an
RMSE of 17.5422 to 14.3432.

4. Conclusion

Case studies of modeling and forecasting the intensity of solar radiation as the effect of several
meteorological and rainfall variables show that applying the wavelet function as an activation
function in the Dynamic-Neural Network (DNN) Model can improve the models' performance. A
performance increase occurs with both training and testing data. The W-DNN forecasting model
performs better when constant parameters are adjusted as an exogenous factor.
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