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Abstract
Handling class imbalances in datasets poses a significant challenge in classification tasks,
particularly when the minority class plays a crucial role in decision-making. One widely adopted
solution is oversampling. This study compares the performance of three popular oversampling
methods—SMOTE (Synthetic Minority Oversampling Technique), SMOTE-ENN (SMOTE with
Edited Nearest Neighbor), and Borderline-SMOTE—based on the number of outliers generated.
Outliers are identified using a Z-score-based statistical approach.
The research was conducted by applying the three oversampling methods across several
datasets. Evaluation involved measuring the number of outliers after resampling, as well as
assessing the impact of these methods on classification performance using accuracy, precision,
recall, and F1-score as evaluation metrics. The results indicate that there is no substantial
difference in the number of outliers produced by SMOTE, SMOTE-ENN, or Borderline-SMOTE.
For instance, in the Diabetes dataset, the percentage of outliers before and after resampling using
SMOTE, SMOTE-ENN, and Borderline-SMOTE were 7.4%, 6.8%, 6.7%, and 6.3%, respectively.
In the Predict Honor dataset, the values were 7.1%, 7.3%, 7.6%, and 7.0%, while in the Wine
Quality dataset, they were 8.0%, 7.8%, 6.8%, and 5.8%. In the Smoking Status dataset, the
percentages were 7.1%, 7.3%, 7.6%, and 7.0%.
However, a more detailed examination of each feature in every dataset revealed that the behavior
of the three algorithms varies, particularly regarding the number of outliers produced per feature.
Despite this variation, the overall difference in total outliers remains insignificant across the
methods. The second major finding concerns the performance of the decision tree classification
model. It was observed that feature correlation has a greater impact on model performance
than achieving a perfectly balanced dataset. This suggests that focusing solely on class ratio
without considering feature relationships may not lead to optimal results.

Keywords: Outlier data, Resample, smote, smote ENN , Borderline Smote

1. Introduction

One of the key determinants of the performance quality of a machine learning model—particularly
in supervised learning—is the balance of the dataset. Imbalanced data can negatively affect the
learning process, especially when the model underrepresents the minority class. Data balance
plays a vital role in influencing the predictive power of classification models. As stated in [1],
achieving balanced data is essential for good classification performance, although perfect
balance—defined as an equal number of samples for each class—is not strictly required. A class
ratio of approximately 60:40 is still considered acceptable in practice.

However, in many real-world scenarios such as fraud detection, medical diagnosis, and pattern
recognition, datasets are often highly imbalanced, with the number of minority class samples
being significantly lower than those of the majority class. A common approach to address this
issue is resampling. Resampling can be performed in two primary ways: (1) generating additional
samples for the minority class to approximate the majority class in size, known as oversampling,
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or (2) reducing the number of majority class samples to match the minority class, referred to as
undersampling [2], [3].

The effectiveness of these resampling techniques largely depends on data distribution and
characteristics—particularly the presence of outliers. Outliers, which are data points that
significantly deviate from the general pattern of the dataset, can reduce the representativeness
of training data and degrade classification performance. Outliers are typically defined as instances
with values far above the upper quartile (Q3) or far below the lower quartile (Q1) of the data
distribution [4], [5].

Outliers have a substantial impact on classification model performance, as shown in the study by
[6]. That study implemented three algorithms—Linear Discriminant Analysis (LDA), K-Nearest
Neighbors (KNN), and Recursive Partitioning and Regression Trees (Rpart)—under three
different conditions: (1) using the original dataset, (2) removing outlier data, and (3) randomly
deleting instances from the dataset. The Iris dataset was used for experimentation. The results
revealed that the lowest error rates were consistently achieved under condition (2), where outlier
data was removed. Specifically, for the LDA model, the error rates were 2.02% (original), 1.54%
(outlier removal), and 2.30% (random deletion). For KNN, the error rates were 4.05%, 2.30%, and
4.10%, respectively. In the Rpart model, the error rates were 6.69%, 2.90%, and 7.32%,
respectively.

In general, outliers can affect machine learning performance in three major ways:
(1) Distorting descriptive statistics such as the mean, making them less representative of the
dataset; (2) Disrupting model learning, particularly in models sensitive to extreme values such as
linear regression; (3) Increasing the risk of overfitting, as some algorithms may become overly
influenced by outlier points and fail to generalize to new data [7], [8].

This study focuses on evaluating how SMOTE-based resampling methods behave in the
presence of outlier data a condition that has rarely been addressed in prior research. While
SMOTE is widely used to balance datasets, its behavior under varying levels of outlier density
remains underexplored. Using Z-score-based outlier detection, we measure the extent to which
SMOTE, SMOTE-ENN, and Borderline-SMOTE generate or amplify outliers, a comparison that
has not been systematically investigated. Although the datasets used in this study are publicly
available, they feature varying degrees of imbalance and natural outlier distributions, making them
appropriate for controlled experimentation. Unlike most studies that apply SMOTE solely to
improve classification accuracy, this research investigates the structural impact of oversampling
on data quality, with a specific focus on the emergence of new outliers. To the best of our
knowledge, this is the first comparative analysis that evaluates outlier generation across SMOTE
variants using Z-score-based metrics.

Table 1 . Description of Dataset in This Research

No Dataset name Description

This dataset consists of 26 features, including 25 predictors and 1 target variable.
It contains a total of 55,692 instances, with 35,327 instances belonging to the non-
smoking class and 20,455 instances to the smoking class.

This dataset consists of 42 features, 41 of which are predictor variables. The total
number of instances is 21,148. The target variable has two classes: 0 and 1, with
14,529 and 4,843 instances, respectively.

This dataset consists of 11 features and a total of 1,599 instances. The target
variable contains six classes with the following distribution: Class 5: 681 instances;
Class 6: 683 instances; Class 7: 199 instances; Class 4: 53 instances; Class 8: 18
instances; Class 3: 10 instances

1 Smoking Dataset

2 Predict Honor Dataset

3 Wine Quality Dataset

This dataset contains 8 features and a total of 768 instances. The target variable
consists of two classes: class 0 with 500 instances and class 1 with 268
instances.

4 Diabetes Dataset

2. Research Methods

This study was conducted to evaluate the performance and characteristics of the SMOTE,
SMOTE-ENN, and Borderline-SMOTE resampling algorithms across various datasets with initially
imbalanced class distributions. The comparison focuses on two main aspects: the number of
outliers generated by each algorithm and the classification performance achieved after applying
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Figure 1. Research Process

oversampling. Four different datasets were used in this research, all obtained from the Kaggle
platform. A description of each dataset is provided in Table 1 and the overall research workflow
is illustrated in Figure 1.

The datasets used in this study exhibit varying degrees of class imbalance. The Wine Quality and
Predict Honor datasets are characterized by severe class imbalance, while the Smoking and
Diabetes datasets display moderate imbalance ratios of approximately 63:37 and 65:35,
respectively. Although these moderate imbalances are not extreme, they are still known to
adversely affect classifier performance particularly in cases where the minority class plays a
critical role in decision-making. The inclusion of both moderately and severely imbalanced
datasets in this study is intentional. This design enables a more comprehensive evaluation of
SMOTE and its variants across a range of real-world conditions. Specifically, we aim to assess
whether SMOTE-based resampling remains effective in scenarios with moderate imbalance, as
such distributions are commonly encountered in practical applications, including industrial and
healthcare domains.

2.1 Exploratory Data Analysis (EDA)

This section presents an analysis of the dataset's initial condition, commonly referred to as
Exploratory Data Analysis (EDA). The primary focus is to examine key aspects of the data,
including missing values, redundancy, and class distribution. As noted in prior studies [9], [10],
EDA is essential for identifying common data issues such as missing values, duplicated entries,
and outliers. Additionally, EDA provides insights that support feature selection and model
development. In this study, two main EDA tasks are conducted, (1) Cleaning the dataset by
addressing missing values and redundant data. (2) Feature selection based on correlation
analysis. For each dataset, a correlation threshold is defined to determine which features exhibit
a moderate level of correlation. This threshold is used to select relevant features for model
training. Previous studies, such as [11], have also applied correlation-based feature selection,
sometimes using ranking methods to identify the top-n most correlated features. However, there
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is no universally accepted rule for selecting the optimal n, and this study similarly does not rely
on a fixed reference for determining the best ranking threshold.

2.2 Evaluation Outlier Pada Dataset

To identify the presence of outliers in the feature and target variables, a boxplot visualization
was used as an initial diagnostic tool. Figure 2 illustrates the distribution of the data and highlights
potential outliers, as described in [12].

In addition to visualization, a second method employed in this study is the Z-score technique,
which quantitatively measures the presence of outliers. As supported by prior studies [13], [14],
the Z-score method is recognized as an effective approach for outlier detection. The Z-score
formula used in this analysis is presented in Equation 1.

Z score =

Z = Z-score of the data point

M = mean of the dataset

o = standard deviation of the dataset

x = value of the data point being evaluated

In this study, a data point is considered an oultlier if its absolute Z-score (|Z]) is greater than 3.

(X-u) (1 )

2.3 Decision Tree Model

In this study, a single machine learning model was selected: the decision tree classification
algorithm based on the Gini index. The Gini index is a commonly used criterion in decision tree
construction, where it measures the impurity of a node to determine the best split at each branch.
The principles of this classification method are discussed in [15], [16].

Unlike the C4.5 algorithm, which relies on entropy and gain ratio for tree construction, the Gini-
based decision tree uses Gini impurity as its splitting criterion. The process of calculating entropy
and gain ratio is detailed in [17]. The Gini index formula is presented in Equation 2.

Gini=1 — 2(P? (2)
P;: Proportion of samples in the ith class at a node
2 (P;i®): The sum of the squares of the class probabilities at that node.

The interpretation of the Gini value is as follows: if all samples within a node belong to a single
class (the node is completely homogeneous), the Gini index equals 0, indicating no impurity.
Conversely, if the samples are evenly distributed across all classes (maximum impurity), the Gini
index approaches 1. A detailed explanation of the classification process using the Gini index in
decision trees can be found in [15].

2.4, Classifier Performance Evaluation

Classifier performance is commonly evaluated using a confusion matrix approach. This matrix
summarizes the classification results into four categories: True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN). These classification outcomes are illustrated in
Figure 2.

‘ Posilive Prediction ‘ Nagafive Prediction
Positive Class True Positive (TP) False Negative (FN)
Nagative Class False Positive (FP) Trug Negative (TN)

Figure 2. Confusion Matrix
True Positive (TP): The number of positive data correctly predicted as positive
False Positive (FP): The number of negative data incorrectly predicted as positive.
False Negative (FN): The number of positive data incorrectly predicted as negative.
True Negative (TN): The number of negative data correctly predicted as negative.
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In the research, five parameters were used, namely:

a. Accuracy: Measures the percentage of correct predictions (both positive and negative).
Expressed by Equation 3.

TP+TN
Accuracy =

(TP+TN+FP+FN) (3)
b. Precision: Measures how reliably the model predicts the positive class (how many positive
predictions are correct). Expressed by Equation 4.
TP
TP+FP (4)
c. Recall (Sensitivity): Also known as sensitivity or True Positive Rate (TPR), it measures how
well the model captures positive data. Expressed by Equation 5.
TP
TP+FN ()
d. F1 score :F1-Score is the harmonic average of Precision and Recall, used when it is
important to balance the two. Expressed by Equation 6.
F1 Score = 2 x (Precession x Recall)

Precision =

Recall =

(6)

Precession+Recall

3. Result and Discussion

Based on the research workflow outlined in Section 2, the following presents the results and
analysis of each stage of the process.

3.1 Results of the Exploratory Data Analysis (EDA)
a. Smoking Dataset.

The detailed results of the Exploratory Data Analysis (EDA) for the Smoking Dataset are
presented in Table 2.

Table 2. EDA Dataset Smoking Dataset

Parameter Description Condition

Empty Data Not Found

Duplicated Data Not Found

Balanced Fitur Class 0 consists of 35,327 instances, while class 1 consists of

20,455 instances, resulting in a class distribution ratio of
approximately 63% to 37%.

Fitur Selection Based on the correlation analysis with a threshold of 0.3, the
selected predictor features are: gender, height, weight, and
hemoglobin.

From the EDA on the Smoking Dataset, we observe that there are no missing or duplicated
instances, which suggests a relatively clean dataset. However, the class distribution shows a
moderate imbalance (63% vs 37%). This justifies the use of resampling methods such as SMOTE
to balance the classes before classification. Feature selection based on correlation identified
‘gender’, ‘height’, ‘weight’, and ‘hemoglobin’ as the most informative predictors, which aligns with
known medical indicators related to smoking behavior. These features are retained for further
analysis

b. Predict Honor Dataset

The detailed results of the Exploratory Data Analysis (EDA) for the Predict Honor Dataset are
presented in Table 3.

Table 3. EDA Predict Honor Dataset

Parameter Description Condition

Empty Data There were four features with a high proportion of missing data: ‘Target_D’, with
14,529 missing values , ‘Honor_Age’, with 4,795 missing values , ‘income_Group’,
with a significant amount of missing data (exact count not specified) ,
‘Wealth_Rating’, with 8,810 missing values
Due to the large amount of missing data, these features were removed from the

dataset.
Duplicated Data Not Found
Balanced Fitur The target feature consists of two classes: class 0 with 14,529 instances and class

1 with 4,843 instances.
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Figure 3. Visualisation quantity of Outlier Data

Fitur Selection A total of eight predictor features were selected based on a correlation threshold of
0.1.

The Predict Honor Dataset initially contained substantial missing values in four features, which
were removed due to their dominance. After cleaning, a class imbalance remains (approximately
75% vs 25%), indicating a need for oversampling. Eight features with correlation threshold > 0.1
were selected, which are expected to enhance model generalizability while reducing noise

c. Dataset Wine Quality Dataset

The detailed results of the Exploratory Data Analysis (EDA) for the Wine Quality dataset are
presented in Table 4.

Table 4. EDA Wine Quality Dataset

Parameter Description Condition

Empty Data Not Found

duplicated Data A total of 240 duplicate instances were identified and
subsequently removed from the dataset.

Balanced Fitur The target variable consists of the following class

distributions: Class 5: 577 instances; Class 6: 535
instances; Class 7: 167 instances; Class 4: 53
instances ; Class 8: 17 instances ; Class 3: 10
instances

Fitur Selection Based on a correlation threshold of 0.1, a total of eight
predictor features were selected.

EDA on the winequality dataset reveals a severe imbalance across multiple classes, especially
in the minority classes (class 3 with only 10 instances). This extreme imbalance, combined with
duplicated instances (240 rows), makes the dataset highly sensitive to synthetic sampling
methods. Feature selection yielded 8 predictors, though visual analysis suggests limited class
separability, which may explain lower classification performance later.

d. Diabetes Dataset

The detailed results of the Exploratory Data Analysis (EDA) for the Diabetes Dataset are
presented in Table 5. The diabetes dataset is relatively balanced (500 vs 268 instances), and free
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of missing or duplicated data. Correlation-based feature selection resulted in 6 features used in
the classification model. This dataset serves as a suitable test case to evaluate the effect of
SMOTE methods under moderately imbalanced but clean conditions.

Table 5. EDA Diabetes Dataset

Parameter Description Condition

Empty Data Not Found

Duplicated Data Not Found

Balanced Fitur class (0) consists of 500 lines, class (1) consists of 268
lines.

The Predictor features selected with a threshold of 0.3
are, 6 features, aimed at Fig 6.

Fitur Selection

3.2 Analysis of Outlier Data
3.2.1 Initial Condition of Dataset

Before applying resampling techniques, outlier identification was performed using both data
visualization and quantitative analysis for each dataset. Figure 3 illustrates the distribution of
outliers detected in each dataset.

Figure 3 illustrates the presence of outliers in the raw datasets using boxplot visualizations.
Notably, features such as ‘weight’ and ‘hemoglobin’ in the Smoking Status dataset show extreme
values, indicating potential skewness in data distribution. This observation supports the need for
careful handling prior to classification. Figure 4 below shows the quantity of outliers for each
dataset

(a) . Outlier in Smoking Dataset

Smoking.csv ﬂ:::’f fes.cov Outlier Data
Fitur Qutlier Data Pregnancies 4
Gender 0 Glucose 5
Height 7 Insulin 18
Weight 398 - H
Hemoalobin 35 DiabstesPediaree.
| Hlemo Age 5
Smoking 0 Outcome 0

(b) . Outlier in Diabetes Dataset

Predict_honor.csv Wine_Quality.csv
Fitur Outlier Data Fitur Outlier Data
Pep Star 0 fixed_acidi?y 9
Frequencystats 0 volatile acidity 9
ReceniResponseProp. 236 ic";'lggd:f;d ; _
| RegentCardResponse. 121 B
RecentResponseCount 2 Total sulfur
RecentCardResponseCount 239 density 13
LifafimeGifCount 298 sulphates 27
ElleGardGit 251 alcohol 7
Target. B 0 quality 10

d). Outlier in Wi lity Dataset
(c) . Outlier in Predict Honor Dataset (d)- Outlier in Wine_Quality Datase

Figure 4 . Quantity outlier Data on each Dataset’s Feature Before Resampling

Next, the resampling process was performed using three algorithms: SMOTE, SMOTE-ENN, and
Borderline-SMOTE. The following presents the outlier conditions observed in each dataset after
the resampling process.

3.2.2 Conditions After Resampling Smoking Dataset
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In the Smoking Dataset, three resampling algorithms were implemented: SMOTE, SMOTE-ENN,
and Borderline-SMOTE. For SMOTE and Borderline-SMOTE, a resampling ratio of 1 was applied
to balance the dataset, meaning the number of instances in each class was equalized based on
the majority class. In contrast, SMOTE-ENN was applied using the ‘auto’ setting. Unlike the other
two methods, SMOTE-ENN typically results in a reduction in the total number of instances, as the
ENN (Edited Nearest Neighbor) component is designed to remove samples that are considered
ambiguous or noisy near class boundaries. The results of outlier detection in the Smoking Dataset
after applying each resampling method are presented below. Outliers are analyzed using boxplot
visualizations and Z-score analysis, with a Z-score threshold of 3 used to identify outlier instances.

Table 6. Outlier data on Smoking Dataset

Initial Smote Smote Borderline

Condition ENN Smote
Gender 0 0 0 0
Height 7 7 17 7
Weight 398 287 236 541
Hemoglobin 525 671 203 679
Smoking 0 0 0 0
Total Data 55692 70474 26746 70474

Furthermore, the percentage of outlier data per feature was calculated based on the total number
of instances resulting from each resampling algorithm. These percentages are illustrated in Figure
5. Subsequently, the resampling process was applied to the Predict Honor dataset. The quantity
of outlier data generated by the three resampling algorithms was compared. The results obtained
after applying SMOTE, SMOTE-ENN, and Borderline-SMOTE to the Predict Honor dataset are
presented in Table 7.

Table 7. Outlier data in Predict Honor Dataset

Fitur Initial Smote Smote ENN  Borderline
Condition Smote
Pep_Star 0 0 0 0
Frequency Status 97nk 0 0 0 0
Recent Response Prop 236 344 137 341
Recent_Card_Response_Prop 121 174 69 164
Recent Response Count 231 354 181 327
Recent Card Response Count 239 368 174 343
Lifetime Gift Count 298 466 208 441
File Card Gift 251 414 144 406
Target B 0 0 0 0
Total Outlier Data 1376 2120 913 2022
Total data 19372 29058 12085 29058

The same resampling treatment was applied to the Wine Quality dataset, and the resulting data
are presented in Table 8.

Table 8. Outlier data in Wine Quality Dataset

Fitur Initi.all Smote Smote Borderline
Condition ENN Smote

fixed acidity 9 17 3 17
volatile acidity 9 48 12 34
citric acid 1 5 5 3
chlorides 27 64 25 62
total sulfur dioxide 12 46 46 43
density 13 23 4 5
sulphates 21 40 18 37
alcohol 7 1 0 1
quality 10 0 0 0
Total Outlier 109 244 113 202
Total data 1359 3112 1666 3462
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The same resampling treatment was applied to the Diabetes dataset, and the resulting data are
presented in Table 9.

Table 9. Outlier data on Diabetes Dataset

Initial Condition Smote Smote  Borderline

Fitur ENN Smote
Pregnancies 4 4 1 4
Glucose 5 5 0 7
Insulin 18 25 13 18
BMI 14 16 8 17
DiabetesPedigreeFunction 11 13 8 12
Age 5 5 5 5
Outcome 0 0 0 0
Total Outlier 57 68 35 63
Total Data 768 1000 522 1000

3.3 Model Classification

The dataset was initially imbalanced, as described in Table 1. To address this, three data
balancing algorithms were applied. The analysis compared the number of outliers before and after
the resampling process. Among the three methods, SMOTE-ENN produced the most favorable
results in terms of minimizing outlier data. Following this, the dataset resampled using SMOTE-
ENN was used to train a Decision Tree classifier based on the Gini index. The training process
used 80% of the data for model training, with the maximum tree depth set to 4.

The classification performance on the resampled Diabetes Dataset was strong, with macro-
average scores for precision, recall, F1-score, and accuracy reaching 92%, 91%, 91%, and 91%,
respectively. Similarly, on the Smoking Dataset, these metrics reached 91%, 94%, 92%, and 93%,
respectively. In contrast, the Wine Quality Dataset yielded the lowest performance, with precision,
recall, F1-score, and accuracy of 65%, 57%, 58%, and 72%, respectively.

Table 10. Performance of the Decision Tree Gini Index in 4 Datasets Resample Test

Dataset Accuracy Precesion Recall F1-Score
Smoking Dataset 0.93 0.91 0.94 0.92
Predict Honor Dataset 0.74 0.74 0.74 0.74
Wine Quality Dataset 0.72 0.65 0.57 0.58
Diabetes Dataset 0.91 0.92 0.91 0.91

In the Smoking Dataset and Diabetes Datasets, a correlation threshold of 0.3 was used for feature
selection, while in the Wine Quality Dataset and Predict Honor Datasets, a lower threshold of 0.1
was applied. This approach is supported by the findings in [1], which suggest that the impact of
effective feature selection is more significant than achieving perfect class balance.

To evaluate the effect of tree complexity on classification performance, additional experiments
were conducted using the Predict Honor Dataset, with decision trees of varying maximum depths:
4,7, 9, and 11. The results indicate that increasing tree depth improves accuracy up to a certain
point. Beyond that, performance gains become marginal or may even decline due to overfitting.
At a maximum depth of 4, the model achieved solid performance with an accuracy of
approximately 74% and an F1-score of 74%. Increasing the depth to 7 and 9 resulted in slight
improvements, suggesting better capture of complex decision boundaries.

The correlation among features plays a crucial role in determining the classification model’s
performance. Tools such as pair plot analysis can aid in detecting feature correlations, identifying
outliers, visualizing data distributions, and guiding feature selection. Based on the pair plot
visualization, several feature pairs show clear class separation. For example, the combination of
hemoglobin and weight demonstrates a relatively distinct separation between classes.

136



LONTAR KOMPUTER VOL. 16, NO. 2 AUGUST 2025 p-ISSN 2088-1541
DOI : 10.24843/LKJTI.2025.v16.i2.p05 e-ISSN 2541-5832
Accredited Sinta 2 by RISTEKDIKTI Decree No. 158/E/KPT/2021

] 120
100 A
s =
= vy
= &
§ :g.‘ 80 4 .,
= o
2 - = 60 A :
2o .
25 S0 75 100 135 " gender
weirthtlka)
(a). Correlation Hemoglobin with Weight (b).Correlation weight with gender

Figure 4 . Correlation Feature based on Pairplot

The visualization in Figure 4(a) illustrates the correlation between the hemoglobin and weight
features for class separation between class 0 (non-smoking) and class 1 (smoking). Class 0 is
represented in red, while class 1 is shown in blue. The separation between the two classes is
relatively clear, indicating that this feature pair contributes meaningfully to classification.

In contrast, Figure 4 (b) presents the relationship between the weight and gender features, which
shows a weaker class separation. For individuals with gender value 1, both low and high weights
still result in overlapping instances between the two classes, making it more challenging to
distinguish between smokers and non-smokers. Nonetheless, some degree of separation is still
observable in the plot. Across all datasets used in this study, pairplot visualizations were
employed to evaluate the quality of feature correlations and their ability to separate classes.
Based on the analysis of these visualizations, it can be concluded that the selected features in
each dataset exhibit sufficient class separation, supporting their suitability for the classification
process. However, the strength of feature correlations and separability naturally varies among
datasets. This difference in feature separability is reflected in the classification performance. For
instance, the Wine Quality dataset showed lower performance compared to the Smoking dataset.
As seen in the pairplot visualizations, the Wine Quality dataset exhibits more overlap between
classes, making it more difficult for the model to distinguish between them. Consequently, this
results in lower classification metrics.

3.4 Discussion

Several key points emerged in the initial discussion regarding the common assumption that
SMOTE-ENN or Borderline-SMOTE would outperform standard SMOTE. However, this
assumption does not always hold true across all datasets. For example, Figure 5 below illustrates
the results from the Smoking Dataset, which highlights some unexpected outcomes in terms of
outlier generation and classification performance.
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Figure 5. Percentage of Outlier Data in Each Feature on Smoking Status Dataset

However, this was not confirmed in the present study. In several features, the number of outliers
generated by SMOTE-ENN and Borderline-SMOTE was actually higher than that produced by
SMOTE. There are several possible explanations for why SMOTE-ENN may result in more
outliers compared to standard SMOTE. As is known, SMOTE-ENN combines two techniques:
SMOTE, an oversampling method that synthesizes new instances for the minority class, and
Edited Nearest Neighbors (ENN), which removes samples deemed "inconsistent" based on the
majority of their nearest neighbors. Importantly, ENN can remove samples from both majority and
minority classes. Several mechanisms may contribute to the increased number of outliers in
SMOTE-ENN: (1) Excessive removal of data points in certain regions may leave synthetic
samples generated by SMOTE without sufficient support from neighboring instances of the same
class, causing them to be interpreted as outliers. (2) Aggressive deletion near class boundaries
may eliminate valid data points, resulting in an unnatural distribution that increases the likelihood
of outlier formation. Based on the findings of this study, it can be argued that the differences in
outlier generation between SMOTE and SMOTE-ENN are not consistently large or significant.
The extent of difference largely depends on the nature of the dataset. In datasets with highly
overlapping or complex class boundaries, as illustrated in Figure 10(a), the risk of outlier formation
increases, even with more sophisticated resampling techniques. However, in datasets with
clearer class separation such as in Figure 10(b) SMOTE-based algorithms are more likely to
generate high-quality synthetic samples, thus improving model performance.

T T T - T T

(a) (b)
Figure 6 (a) Complex Overlapping data distribution  (b) Separated well data distribution

This study also found that Borderline-SMOTE had a less significant impact compared to standard
SMOTE. As is known, Borderline-SMOTE is an oversampling technique that focuses on
generating synthetic samples near the decision boundary, where the minority class is most at risk
of misclassification. However, when the data distribution exhibits significant class overlap, the
algorithm may produce inaccurate or misleading synthetic samples, ultimately reducing the
effectiveness of the resampling process. In such scenarios, the boundary between classes
becomes ambiguous, making it difficult to generate meaningful data without introducing noise or
outliers. Based on the findings of this study, it is recommended that a thorough preliminary
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analysis of the data distribution be conducted prior to applying Borderline-SMOTE. Understanding
the degree of class overlap and the structure of the feature space can help determine whether
this resampling method is appropriate or if alternative techniques may yield better performance.

4. Conclusions

Based on the experimental results, several important conclusions can be drawn. First, the study
shows that feature selection plays a more dominant role in improving classification performance
compared to data balancing through resampling. In this context, it was also found that achieving
a perfectly balanced class distribution (ratio 1:1) is not necessarily optimal for model performance.
Second, although theoretically SMOTE-ENN and Borderline-SMOTE are expected to reduce the
number of outliers due to their refined sampling mechanisms, the findings did not fully support
this assumption. In several datasets, the standard SMOTE algorithm actually produced fewer
outliers than its more complex variants, indicating that these advanced methods may behave
unpredictably depending on the data structure.

Smote ENN can produce more outliers than smote, which is caused by the combination of
oversampling and aggressive instance deletion. This process can disrupt the original data
distribution, particularly around class boundaries. Such behavior is a side effect of highly
aggressive balancing strategies and may be mitigated through careful parameter tuning, data
preprocessing, and distribution analysis prior to resampling.

Finally, when applying SMOTE-ENN, caution is advised, especially in datasets where the majority
and minority classes overlap significantly. In such cases, SMOTE may generate synthetic
samples in overlapping regions, and the ENN step may remove nearby majority instances,
unintentionally isolating the synthetic points. This effect causes the synthetic data to behave like
outliers, which may harm the model’s generalization. Therefore, understanding the interaction
between class distribution and the chosen resampling strategy is critical for successful
implementation.
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