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Abstract 

Handling class imbalances in datasets poses a significant challenge in classification tasks, 
particularly when the minority class plays a crucial role in decision-making. One widely adopted 
solution is oversampling. This study compares the performance of three popular oversampling 
methods—SMOTE (Synthetic Minority Oversampling Technique), SMOTE-ENN (SMOTE with 
Edited Nearest Neighbor), and Borderline-SMOTE—based on the number of outliers generated. 
Outliers are identified using a Z-score-based statistical approach. 
The research was conducted by applying the three oversampling methods across several 
datasets. Evaluation involved measuring the number of outliers after resampling, as well as 
assessing the impact of these methods on classification performance using accuracy, precision, 
recall, and F1-score as evaluation metrics. The results indicate that there is no substantial 
difference in the number of outliers produced by SMOTE, SMOTE-ENN, or Borderline-SMOTE. 
For instance, in the Diabetes dataset, the percentage of outliers before and after resampling using 
SMOTE, SMOTE-ENN, and Borderline-SMOTE were 7.4%, 6.8%, 6.7%, and 6.3%, respectively. 
In the Predict Honor dataset, the values were 7.1%, 7.3%, 7.6%, and 7.0%, while in the Wine 
Quality dataset, they were 8.0%, 7.8%, 6.8%, and 5.8%. In the Smoking Status dataset, the 
percentages were 7.1%, 7.3%, 7.6%, and 7.0%.  
However, a more detailed examination of each feature in every dataset revealed that the behavior 
of the three algorithms varies, particularly regarding the number of outliers produced per feature. 
Despite this variation, the overall difference in total outliers remains insignificant across the 
methods. The second major finding concerns the performance of the decision tree classification 
model. It was observed that feature correlation has a greater impact on model performance 
than achieving a perfectly balanced dataset. This suggests that focusing solely on class ratio 
without considering feature relationships may not lead to optimal results. 
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1. Introduction 

One of the key determinants of the performance quality of a machine learning model—particularly 

in supervised learning—is the balance of the dataset. Imbalanced data can negatively affect the 
learning process, especially when the model underrepresents the minority class. Data balance 
plays a vital role in influencing the predictive power of classification models. As stated in  [1], 
achieving balanced data is essential for good classification performance, although perfect 
balance—defined as an equal number of samples for each class—is not strictly required. A class 
ratio of approximately 60:40 is still considered acceptable in practice. 

However, in many real-world scenarios such as fraud detection, medical diagnosis, and pattern 
recognition, datasets are often highly imbalanced, with the number of minority class samples 
being significantly lower than those of the majority class. A common approach to address this 
issue is resampling. Resampling can be performed in two primary ways: (1) generating additional 
samples for the minority class to approximate the majority class in size, known as oversampling, 
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or (2) reducing the number of majority class samples to match the minority class, referred to as 
undersampling [2], [3]. 

The effectiveness of these resampling techniques largely depends on data distribution and 
characteristics—particularly the presence of outliers. Outliers, which are data points that 
significantly deviate from the general pattern of the dataset, can reduce the representativeness 
of training data and degrade classification performance. Outliers are typically defined as instances 
with values far above the upper quartile (Q3) or far below the lower quartile (Q1) of the data 
distribution [4], [5]. 

Outliers have a substantial impact on classification model performance, as shown in the study by 
[6]. That study implemented three algorithms—Linear Discriminant Analysis (LDA), K-Nearest 
Neighbors (KNN), and Recursive Partitioning and Regression Trees (Rpart)—under three 
different conditions: (1) using the original dataset, (2) removing outlier data, and (3) randomly 
deleting instances from the dataset. The Iris dataset was used for experimentation. The results 
revealed that the lowest error rates were consistently achieved under condition (2), where outlier 
data was removed. Specifically, for the LDA model, the error rates were 2.02% (original), 1.54% 
(outlier removal), and 2.30% (random deletion). For KNN, the error rates were 4.05%, 2.30%, and 
4.10%, respectively. In the Rpart model, the error rates were 6.69%, 2.90%, and 7.32%, 
respectively. 

In general, outliers can affect machine learning performance in three major ways: 
(1) Distorting descriptive statistics such as the mean, making them less representative of the 
dataset; (2) Disrupting model learning, particularly in models sensitive to extreme values such as 
linear regression; (3) Increasing the risk of overfitting, as some algorithms may become overly 
influenced by outlier points and fail to generalize to new data [7], [8]. 

This study focuses on evaluating how SMOTE-based resampling methods behave in the 

presence of outlier data a condition that has rarely been addressed in prior research. While 
SMOTE is widely used to balance datasets, its behavior under varying levels of outlier density 
remains underexplored. Using Z-score-based outlier detection, we measure the extent to which 
SMOTE, SMOTE-ENN, and Borderline-SMOTE generate or amplify outliers, a comparison that 
has not been systematically investigated. Although the datasets used in this study are publicly 
available, they feature varying degrees of imbalance and natural outlier distributions, making them 
appropriate for controlled experimentation. Unlike most studies that apply SMOTE solely to 
improve classification accuracy, this research investigates the structural impact of oversampling 
on data quality, with a specific focus on the emergence of new outliers. To the best of our 
knowledge, this is the first comparative analysis that evaluates outlier generation across SMOTE 
variants using Z-score-based metrics. 

Table 1 . Description of Dataset in This Research 

No Dataset name Description 

1  Smoking Dataset 
This dataset consists of 26 features, including 25 predictors and 1 target variable. 
It contains a total of 55,692 instances, with 35,327 instances belonging to the non-
smoking class and 20,455 instances to the smoking class. 

2 Predict Honor Dataset 
This dataset consists of 42 features, 41 of which are predictor variables. The total 
number of instances is 21,148. The target variable has two classes: 0 and 1, with 
14,529 and 4,843 instances, respectively. 

3 Wine Quality Dataset 
This dataset consists of 11 features and a total of 1,599 instances. The target 
variable contains six classes with the following distribution: Class 5: 681 instances; 
Class 6: 683 instances; Class 7: 199 instances; Class 4: 53 instances; Class 8: 18 
instances; Class 3: 10 instances 
 

4 Diabetes Dataset 
This dataset contains 8 features and a total of 768 instances. The target variable 
consists of two classes: class 0 with 500 instances and class 1 with 268 
instances. 

 
2. Research Methods 

This study was conducted to evaluate the performance and characteristics of the SMOTE, 
SMOTE-ENN, and Borderline-SMOTE resampling algorithms across various datasets with initially 
imbalanced class distributions. The comparison focuses on two main aspects: the number of 
outliers generated by each algorithm and the classification performance achieved after applying 
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oversampling. Four different datasets were used in this research, all obtained from the Kaggle 
platform. A description of each dataset is provided in Table 1 and the overall research workflow 
is illustrated in Figure 1. 

 

The datasets used in this study exhibit varying degrees of class imbalance. The Wine Quality and 

Predict Honor datasets are characterized by severe class imbalance, while the Smoking and 
Diabetes datasets display moderate imbalance ratios of approximately 63:37 and 65:35, 
respectively. Although these moderate imbalances are not extreme, they are still known to 
adversely affect classifier performance particularly in cases where the minority class plays a 
critical role in decision-making. The inclusion of both moderately and severely imbalanced 
datasets in this study is intentional. This design enables a more comprehensive evaluation of 
SMOTE and its variants across a range of real-world conditions. Specifically, we aim to assess 
whether SMOTE-based resampling remains effective in scenarios with moderate imbalance, as 
such distributions are commonly encountered in practical applications, including industrial and 
healthcare domains. 

 
2.1 Exploratory Data Analysis (EDA) 

This section presents an analysis of the dataset's initial condition, commonly referred to as 
Exploratory Data Analysis (EDA). The primary focus is to examine key aspects of the data, 
including missing values, redundancy, and class distribution. As noted in prior studies [9], [10], 
EDA is essential for identifying common data issues such as missing values, duplicated entries, 
and outliers. Additionally, EDA provides insights that support feature selection and model 
development. In this study, two main EDA tasks are conducted, (1) Cleaning the dataset by 
addressing missing values and redundant data. (2) Feature selection based on correlation 
analysis. For each dataset, a correlation threshold is defined to determine which features exhibit 
a moderate level of correlation. This threshold is used to select relevant features for model 
training. Previous studies, such as [11], have also applied correlation-based feature selection, 
sometimes using ranking methods to identify the top-n most correlated features. However, there 

 

Figure 1. Research Process 



LONTAR KOMPUTER VOL. 16, NO. 2 AUGUST 2025 p-ISSN 2088-1541 
DOI : 10.24843/LKJTI.2025.v16.i2.p05  e-ISSN 2541-5832 
Accredited Sinta 2 by RISTEKDIKTI Decree No. 158/E/KPT/2021 
 

131 
 

is no universally accepted rule for selecting the optimal n, and this study similarly does not rely 
on a fixed reference for determining the best ranking threshold. 
 

2.2 Evaluation Outlier Pada Dataset 

To identify the presence of outliers in the feature and target variables, a boxplot visualization 
was used as an initial diagnostic tool. Figure 2 illustrates the distribution of the data and highlights 
potential outliers, as described in [12]. 

In addition to visualization, a second method employed in this study is the Z-score technique, 

which quantitatively measures the presence of outliers. As supported by prior studies [13], [14], 
the Z-score method is recognized as an effective approach for outlier detection. The Z-score 
formula used in this analysis is presented in Equation 1. 

𝑍 𝑠𝑐𝑜𝑟𝑒 =  
(𝑋−𝜇)

𝜎
                                                                                       (1) 

Z = Z-score of the data point 
μ = mean of the dataset 
σ = standard deviation of the dataset 
x = value of the data point being evaluated 
In this study, a data point is considered an outlier if its absolute Z-score (|Z|) is greater than 3. 

2.3 Decision Tree  Model   

In this study, a single machine learning model was selected: the decision tree classification 
algorithm based on the Gini index. The Gini index is a commonly used criterion in decision tree 
construction, where it measures the impurity of a node to determine the best split at each branch. 
The principles of this classification method are discussed in [15], [16]. 
Unlike the C4.5 algorithm, which relies on entropy and gain ratio for tree construction, the Gini-
based decision tree uses Gini impurity as its splitting criterion. The process of calculating entropy 
and gain ratio is detailed in [17]. The Gini index formula is presented in Equation 2. 
 

𝐺𝑖𝑛𝑖 = 1 −  𝛴(𝑃ᵢ²)          (2) 

𝑷ᵢ: Proportion of samples in the ith class at a node 

𝛴(𝑃ᵢ²): The sum of the squares of the class probabilities at that node. 

The interpretation of the Gini value is as follows: if all samples within a node belong to a single 

class (the node is completely homogeneous), the Gini index equals 0, indicating no impurity. 
Conversely, if the samples are evenly distributed across all classes (maximum impurity), the Gini 
index approaches 1. A detailed explanation of the classification process using the Gini index in 
decision trees can be found in [15]. 

 

2.4. Classifier Performance Evaluation 

Classifier performance is commonly evaluated using a confusion matrix approach. This matrix 
summarizes the classification results into four categories: True Positive (TP), True Negative (TN), 
False Positive (FP), and False Negative (FN). These classification outcomes are illustrated in 
Figure 2. 

 

Figure 2. Confusion Matrix 

True Positive (TP): The number of positive data correctly predicted as positive 
False Positive (FP): The number of negative data incorrectly predicted as positive. 
False Negative (FN): The number of positive data incorrectly predicted as negative. 
True Negative (TN): The number of negative data correctly predicted as negative. 
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In the research, five parameters were used, namely: 

a. Accuracy: Measures the percentage of correct predictions (both positive and negative). 

Expressed by Equation 3. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
                    (3) 

b. Precision: Measures how reliably the model predicts the positive class (how many positive 

predictions are correct). Expressed by Equation 4. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                 (4) 

c. Recall (Sensitivity): Also known as sensitivity or True Positive Rate (TPR), it measures how 

well the model captures positive data. Expressed by Equation 5. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                   (5) 

d. F1 score :F1-Score is the harmonic average of Precision and Recall, used when it is 

important to balance the two. Expressed by Equation 6. 

                          𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 𝑥 (𝑃𝑟𝑒𝑐𝑒𝑠𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑒𝑠𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                              (6) 

   
3. Result and Discussion 

Based on the research workflow outlined in Section 2, the following presents the results and 
analysis of each stage of the process. 

3.1  Results of the Exploratory Data Analysis (EDA) 

a.  Smoking Dataset. 

The detailed results of the Exploratory Data Analysis (EDA) for the Smoking Dataset are 
presented in Table 2. 

Table 2. EDA Dataset  Smoking Dataset 
 Parameter Description Condition 

Empty Data  Not Found 

Duplicated Data Not Found 

Balanced Fitur  Class 0 consists of 35,327 instances, while class 1 consists of 
20,455 instances, resulting in a class distribution ratio of 
approximately 63% to 37%. 

Fitur Selection Based on the correlation analysis with a threshold of 0.3, the 
selected predictor features are: gender, height, weight, and 
hemoglobin. 

From the EDA on the  Smoking Dataset, we observe that there are no missing or duplicated 
instances, which suggests a relatively clean dataset. However, the class distribution shows a 
moderate imbalance (63% vs 37%). This justifies the use of resampling methods such as SMOTE 
to balance the classes before classification. Feature selection based on correlation identified 
‘gender’, ‘height’, ‘weight’, and ‘hemoglobin’ as the most informative predictors, which aligns with 
known medical indicators related to smoking behavior. These features are retained for further 
analysis 

b.  Predict Honor Dataset  

The detailed results of the Exploratory Data Analysis (EDA) for the Predict Honor Dataset are 
presented in Table 3. 

Table 3. EDA Predict Honor Dataset 

Parameter Description Condition 

Empty Data  There were four features with a high proportion of missing data: ‘Target_D’, with 
14,529 missing values , ‘Honor_Age’, with 4,795 missing values , ‘Income_Group’, 
with a significant amount of missing data (exact count not specified) , 
‘Wealth_Rating’, with 8,810 missing values 
Due to the large amount of missing data, these features were removed from the 
dataset. 

Duplicated Data Not Found 

Balanced Fitur The target feature consists of two classes: class 0 with 14,529 instances and class 
1 with 4,843 instances. 
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Fitur Selection A total of eight predictor features were selected based on a correlation threshold of 
0.1.  

The Predict Honor Dataset initially contained substantial missing values in four features, which 
were removed due to their dominance. After cleaning, a class imbalance remains (approximately 
75% vs 25%), indicating a need for oversampling. Eight features with correlation threshold > 0.1 
were selected, which are expected to enhance model generalizability while reducing noise 

c.  Dataset  Wine Quality Dataset 

The detailed results of the Exploratory Data Analysis (EDA) for the Wine Quality dataset are 

presented in Table 4. 

Table 4. EDA  Wine Quality Dataset 

Parameter Description Condition  

Empty Data  Not Found 

duplicated Data A total of 240 duplicate instances were identified and 
subsequently removed from the dataset. 

Balanced Fitur  The target variable consists of the following class 
distributions: Class 5: 577 instances; Class 6: 535 
instances; Class 7: 167 instances; Class 4: 53 
instances ; Class 8: 17 instances ; Class 3: 10 
instances 

Fitur Selection Based on a correlation threshold of 0.1, a total of eight 
predictor features were selected. 

EDA on the winequality dataset reveals a severe imbalance across multiple classes, especially 

in the minority classes (class 3 with only 10 instances). This extreme imbalance, combined with 
duplicated instances (240 rows), makes the dataset highly sensitive to synthetic sampling 
methods. Feature selection yielded 8 predictors, though visual analysis suggests limited class 
separability, which may explain lower classification performance later. 

d.  Diabetes Dataset 

The detailed results of the Exploratory Data Analysis (EDA) for the Diabetes Dataset are 

presented in Table 5. The diabetes dataset is relatively balanced (500 vs 268 instances), and free 

 
               (a)  Smoking  Dataset 

 
(b) Predict Honor Dataset 

 

(c ) Wine Quality Dataset 

 

(d) Diabetes Dataset 

Figure 3.  Visualisation quantity of Outlier Data 
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of missing or duplicated data. Correlation-based feature selection resulted in 6 features used in 
the classification model. This dataset serves as a suitable test case to evaluate the effect of 
SMOTE methods under moderately imbalanced but clean conditions. 

 

Table 5. EDA  Diabetes Dataset 

Parameter Description Condition 

Empty Data  Not Found 

Duplicated Data Not Found 

Balanced Fitur  class (0) consists of 500 lines, class (1) consists of 268 
lines. 

Fitur Selection The Predictor features selected with a threshold of 0.3 
are, 6 features, aimed at Fig 6. 

 

3.2  Analysis of Outlier Data 

3.2.1 Initial Condition of Dataset 

Before applying resampling techniques, outlier identification was performed using both data 

visualization and quantitative analysis for each dataset. Figure 3 illustrates the distribution of 
outliers detected in each dataset. 

Figure 3 illustrates the presence of outliers in the raw datasets using boxplot visualizations. 
Notably, features such as ‘weight’ and ‘hemoglobin’ in the Smoking Status dataset show extreme 
values, indicating potential skewness in data distribution. This observation supports the need for 
careful handling prior to classification. Figure 4 below shows the quantity of outliers for each 
dataset 

 

 
(a) . Outlier in Smoking Dataset 

 
(b) . Outlier in Diabetes Dataset 

 

 ( c)  . Outlier in Predict Honor Dataset 

 

(d). Outlier in Wine_Quality Dataset 

Figure 4 .  Quantity outlier Data on each Dataset’s Feature Before Resampling 

Next, the resampling process was performed using three algorithms: SMOTE, SMOTE-ENN, and 

Borderline-SMOTE. The following presents the outlier conditions observed in each dataset after 
the resampling process. 

 

3.2.2 Conditions After Resampling Smoking Dataset 
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In the Smoking Dataset, three resampling algorithms were implemented: SMOTE, SMOTE-ENN, 
and Borderline-SMOTE. For SMOTE and Borderline-SMOTE, a resampling ratio of 1 was applied 
to balance the dataset, meaning the number of instances in each class was equalized based on 
the majority class. In contrast, SMOTE-ENN was applied using the ‘auto’ setting. Unlike the other 
two methods, SMOTE-ENN typically results in a reduction in the total number of instances, as the 
ENN (Edited Nearest Neighbor) component is designed to remove samples that are considered 
ambiguous or noisy near class boundaries. The results of outlier detection in the Smoking Dataset 
after applying each resampling method are presented below. Outliers are analyzed using boxplot 
visualizations and Z-score analysis, with a Z-score threshold of 3 used to identify outlier instances. 

Table 6. Outlier data on  Smoking Dataset 

  
Initial 

Condition 
Smote 

Smote 
ENN 

Borderline 
 Smote 

Gender 0 0 0 0 

Height 7 7 17 7 

Weight 398 287 236 541 

Hemoglobin 525 671 203 679 

Smoking 0 0 0 0 

Total Data 55692 70474 26746 70474 

Furthermore, the percentage of outlier data per feature was calculated based on the total number 
of instances resulting from each resampling algorithm. These percentages are illustrated in Figure 
5. Subsequently, the resampling process was applied to the Predict Honor dataset. The quantity 
of outlier data generated by the three resampling algorithms was compared. The results obtained 
after applying SMOTE, SMOTE-ENN, and Borderline-SMOTE to the Predict Honor dataset are 
presented in Table 7. 

Table 7. Outlier data in Predict Honor Dataset 

Fitur Initial 
Condition 

Smote Smote ENN Borderline 
 Smote 

Pep_Star  0 0 0 0 

Frequency_Status_97nk  0 0 0 0 

Recent_Response_Prop 236 344 137 341 

Recent_Card_Response_Prop 121 174 69 164 

Recent_Response_Count 231 354 181 327 

Recent_Card_Response_Count 239 368 174 343 

Lifetime_Gift_Count 298 466 208 441 

File_Card_Gift 251 414 144 406 

Target_B 0 0 0 0 

Total Outlier Data 1376 2120 913 2022 

Total data 19372 29058 12085 29058 

 The same resampling treatment was applied to the Wine Quality dataset, and the resulting data 

are presented in Table 8. 

Table 8. Outlier data in  Wine Quality Dataset 

Fitur  
Initial 

Condition 
Smote 

Smote 
ENN 

Borderline 
 Smote 

fixed acidity          9 17 3 17 

volatile acidity          9 48 12 34 

citric acid               1 5 5 3 

chlorides               27 64 25 62 

total sulfur dioxide     12 46 46 43 

density                  13 23 4 5 

sulphates              21 40 18 37 

alcohol                   7 1 0 1 

quality                  10 0 0 0 

Total Outlier 109 244 113 202 

Total data 1359 3112 1666 3462 
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The same resampling treatment was applied to the Diabetes dataset, and the resulting data are 
presented in Table 9. 

 

Table 9. Outlier data on Diabetes Dataset 

Fitur 
Initial Condition Smote 

Smote 
ENN 

Borderline 
 Smote 

Pregnancies    4 4 1 4 

Glucose                       5 5 0 7 

Insulin                      18 25 13 18 

BMI                          14 16 8 17 

DiabetesPedigreeFunction     11 13 8 12 

Age                           5 5 5 5 

Outcome                       0 0 0 0 

Total Outlier 57 68 35 63 

Total Data 768 1000 522 1000 

 

3.3 Model Classification 

The dataset was initially imbalanced, as described in Table 1. To address this, three data 
balancing algorithms were applied. The analysis compared the number of outliers before and after 
the resampling process. Among the three methods, SMOTE-ENN produced the most favorable 
results in terms of minimizing outlier data. Following this, the dataset resampled using SMOTE-
ENN was used to train a Decision Tree classifier based on the Gini index. The training process 
used 80% of the data for model training, with the maximum tree depth set to 4. 

The classification performance on the resampled Diabetes Dataset was strong, with macro-
average scores for precision, recall, F1-score, and accuracy reaching 92%, 91%, 91%, and 91%, 
respectively. Similarly, on the Smoking Dataset, these metrics reached 91%, 94%, 92%, and 93%, 
respectively. In contrast, the Wine Quality Dataset yielded the lowest performance, with precision, 
recall, F1-score, and accuracy of 65%, 57%, 58%, and 72%, respectively. 

Table 10. Performance  of the Decision Tree Gini Index in 4 Datasets Resample  Test 

Dataset Accuracy Precesion Recall F1-Score 

Smoking Dataset 0.93 0.91 0.94 0.92 

Predict Honor Dataset 0.74 0.74 0.74 0.74 

Wine Quality Dataset 0.72 0.65 0.57 0.58 

Diabetes Dataset 0.91 0.92 0.91 0.91 

In the Smoking Dataset and Diabetes Datasets, a correlation threshold of 0.3 was used for feature 

selection, while in the Wine Quality Dataset and Predict Honor Datasets, a lower threshold of 0.1 
was applied. This approach is supported by the findings in [1], which suggest that the impact of 
effective feature selection is more significant than achieving perfect class balance. 

To evaluate the effect of tree complexity on classification performance, additional experiments 

were conducted using the Predict Honor Dataset, with decision trees of varying maximum depths: 
4, 7, 9, and 11. The results indicate that increasing tree depth improves accuracy up to a certain 
point. Beyond that, performance gains become marginal or may even decline due to overfitting. 
At a maximum depth of 4, the model achieved solid performance with an accuracy of 
approximately 74% and an F1-score of 74%. Increasing the depth to 7 and 9 resulted in slight 
improvements, suggesting better capture of complex decision boundaries. 

The correlation among features plays a crucial role in determining the classification model’s 
performance. Tools such as pair plot analysis can aid in detecting feature correlations, identifying 
outliers, visualizing data distributions, and guiding feature selection. Based on the pair plot 
visualization, several feature pairs show clear class separation. For example, the combination of 
hemoglobin and weight demonstrates a relatively distinct separation between classes. 
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The visualization in Figure 4(a) illustrates the correlation between the hemoglobin and weight 

features for class separation between class 0 (non-smoking) and class 1 (smoking). Class 0 is 
represented in red, while class 1 is shown in blue. The separation between the two classes is 
relatively clear, indicating that this feature pair contributes meaningfully to classification. 

In contrast, Figure 4 (b) presents the relationship between the weight and gender features, which 

shows a weaker class separation. For individuals with gender value 1, both low and high weights 
still result in overlapping instances between the two classes, making it more challenging to 
distinguish between smokers and non-smokers. Nonetheless, some degree of separation is still 
observable in the plot. Across all datasets used in this study, pairplot visualizations were 
employed to evaluate the quality of feature correlations and their ability to separate classes. 
Based on the analysis of these visualizations, it can be concluded that the selected features in 
each dataset exhibit sufficient class separation, supporting their suitability for the classification 
process. However, the strength of feature correlations and separability naturally varies among 
datasets. This difference in feature separability is reflected in the classification performance. For 
instance, the Wine Quality dataset showed lower performance compared to the Smoking dataset. 
As seen in the pairplot visualizations, the Wine Quality dataset exhibits more overlap between 
classes, making it more difficult for the model to distinguish between them. Consequently, this 
results in lower classification metrics. 

3.4 Discussion 

Several key points emerged in the initial discussion regarding the common assumption that 
SMOTE-ENN or Borderline-SMOTE would outperform standard SMOTE. However, this 
assumption does not always hold true across all datasets. For example, Figure 5 below illustrates 
the results from the Smoking Dataset, which highlights some unexpected outcomes in terms of 
outlier generation and classification performance. 

 

 (a). Correlation Hemoglobin with Weight 

 

(b).Correlation weight with gender 

Figure 4 . Correlation Feature based on Pairplot 
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Figure 5. Percentage of Outlier Data in Each Feature on  Smoking Status Dataset 

However, this was not confirmed in the present study. In several features, the number of outliers 
generated by SMOTE-ENN and Borderline-SMOTE was actually higher than that produced by 
SMOTE. There are several possible explanations for why SMOTE-ENN may result in more 
outliers compared to standard SMOTE. As is known, SMOTE-ENN combines two techniques: 
SMOTE, an oversampling method that synthesizes new instances for the minority class, and 
Edited Nearest Neighbors (ENN), which removes samples deemed "inconsistent" based on the 
majority of their nearest neighbors. Importantly, ENN can remove samples from both majority and 
minority classes. Several mechanisms may contribute to the increased number of outliers in 
SMOTE-ENN: (1) Excessive removal of data points in certain regions may leave synthetic 
samples generated by SMOTE without sufficient support from neighboring instances of the same 
class, causing them to be interpreted as outliers. (2) Aggressive deletion near class boundaries 
may eliminate valid data points, resulting in an unnatural distribution that increases the likelihood 
of outlier formation. Based on the findings of this study, it can be argued that the differences in 
outlier generation between SMOTE and SMOTE-ENN are not consistently large or significant. 
The extent of difference largely depends on the nature of the dataset. In datasets with highly 
overlapping or complex class boundaries, as illustrated in Figure 10(a), the risk of outlier formation 
increases, even with more sophisticated resampling techniques. However, in datasets with 
clearer class separation such as in Figure 10(b) SMOTE-based algorithms are more likely to 
generate high-quality synthetic samples, thus improving model performance. 

 

  

(a) (b) 

Figure  6  (a) Complex Overlapping data distribution     (b) Separated well data distribution 

This study also found that Borderline-SMOTE had a less significant impact compared to standard 
SMOTE. As is known, Borderline-SMOTE is an oversampling technique that focuses on 
generating synthetic samples near the decision boundary, where the minority class is most at risk 
of misclassification. However, when the data distribution exhibits significant class overlap, the 
algorithm may produce inaccurate or misleading synthetic samples, ultimately reducing the 
effectiveness of the resampling process. In such scenarios, the boundary between classes 
becomes ambiguous, making it difficult to generate meaningful data without introducing noise or 
outliers. Based on the findings of this study, it is recommended that a thorough preliminary 
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analysis of the data distribution be conducted prior to applying Borderline-SMOTE. Understanding 
the degree of class overlap and the structure of the feature space can help determine whether 
this resampling method is appropriate or if alternative techniques may yield better performance. 

 

4. Conclusions 
Based on the experimental results, several important conclusions can be drawn. First, the study 
shows that feature selection plays a more dominant role in improving classification performance 
compared to data balancing through resampling. In this context, it was also found that achieving 
a perfectly balanced class distribution (ratio 1:1) is not necessarily optimal for model performance. 
Second, although theoretically SMOTE-ENN and Borderline-SMOTE are expected to reduce the 
number of outliers due to their refined sampling mechanisms, the findings did not fully support 
this assumption. In several datasets, the standard SMOTE algorithm actually produced fewer 
outliers than its more complex variants, indicating that these advanced methods may behave 
unpredictably depending on the data structure. 
Smote ENN can produce more outliers than smote, which is caused by the combination of 
oversampling and aggressive instance deletion. This process can disrupt the original data 
distribution, particularly around class boundaries. Such behavior is a side effect of highly 
aggressive balancing strategies and may be mitigated through careful parameter tuning, data 
preprocessing, and distribution analysis prior to resampling. 
Finally, when applying SMOTE-ENN, caution is advised, especially in datasets where the majority 
and minority classes overlap significantly. In such cases, SMOTE may generate synthetic 
samples in overlapping regions, and the ENN step may remove nearby majority instances, 
unintentionally isolating the synthetic points. This effect causes the synthetic data to behave like 
outliers, which may harm the model’s generalization. Therefore, understanding the interaction 
between class distribution and the chosen resampling strategy is critical for successful 
implementation. 
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