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Abstract

Sign language is a vital communication method for individuals with hearing loss or deafness, with
variations reflecting unique cultural contexts. Real-time recognition of sign language can bridge
communication gaps, yet developing tools for Indonesian Sign Language (BISINDQ) is
challenging due to limited datasets. This research addresses these challenges by enhancing
BISINDO detection and real-time recognition, focusing on flexible dataset collection and
adaptation to varying lighting conditions. Three convolutional neural networks, namely
InceptionV3, MobileNetV2, and ResNet50, are evaluated with optimizers SGD, Adagrad, and
Adam to determine the best architecture-optimizer combination. Models were trained on a
common dataset and analyzed for optimal performance. Real-time recognition uses MobileNetV2
SSD, integrating data augmentation to improve performance under diverse lighting. The system
was deployed on a mobile device for practical use. Results showed the real-time model attained
a mean Average Precision (mAP) of 90.34%. This study demonstrates significant advancements
in BISINDO recognition and real-time application.

Keywords: Convolutional Neural Network, Sign Language, Indonesian Sign Language,
BISINDO, MobileNetV2 SSD

1. Introduction

Sign language serves as the main form of communication for individuals who are deaf or hard of
hearing, differing significantly from spoken language used by people who can hear and speak
clearly. This difference often creates a barrier in communication between the deaf and hearing
communities. To address this issue, machine learning can be used to develop a device that
facilitate communication, such as Sign Language Recognition (SLR) system. Unlike spoken
languages, sign language is a combination of visual elements, including facial expressions, body
movements, and hand gestures. Converting sign language into text can serve as an essential tool
to bridge the gap between hearing and deaf communities. Research into machine learning
algorithms for SLR has been extensive, with techniques like Convolutional Neural Networks
(CNN) playing a key role in the classification and extraction of sign language gestures. In the
context of Indonesian Sign Language (ISL), specifically BISINDO, the development of an SLR
system is challenging due to the limited resources of high-quality BISINDO datasets. Therefore,
creating a BISINDO dataset through processes like data augmentation and annotation, along with
using models that are suitable for classification and detection while being lightweight, is crucial
for achieving accurate, real-time recognition of ISL in the BISINDO format.

While prior studies have contributed significantly to BISINDO recognition using convolutional
neural networks, many remain limited in terms of real-time deployment and mobile efficiency. For
instance, [1] developed a custom CNN model that achieved high accuracy (98.3%) in recognizing
BISINDO gestures under varying lighting and perspectives. However, their work was focused
solely on static image classification and did not address inference speed or model deployment on
resource-constrained devices. Meanwhile, [2] implemented a CNN model to detect BISINDO and
SIBI signs, obtaining 82.3% testing accuracy on BISINDO data. Despite these promising results,
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the study used a relatively small dataset (only 12 samples per class for BISINDO), lacked noise
reduction techniques, and did not incorporate mobile-oriented architecture or real-time evaluation.
In contrast, our research builds upon these foundations by evaluating three powerful CNN
architectures. MobileNetV2, ResNet50, and InceptionV3, in combination with optimization
strategies such as Adam, AdaGrad, and SGD. Among these, MobileNetV2 is prioritized for its
lightweight design, making it highly suitable for deployment on mobile and embedded devices. To
further support real-time recognition, MobileNetV2 is integrated with the Single Shot Multibox
Detector (SSD), enabling simultaneous gesture classification and localization in a single pass.
This integration ensures efficient inference speed without sacrificing accuracy. While ResNet50
and InceptionV3 provide valuable performance benchmarks, the MobileNetV2 SSD pairing serves
as the core of our proposed mobile-friendly BISINDO recognition system. This approach fills a
critical gap in existing BISINDO research by addressing both classification performance and the
practical demands of real-time, on-device deployment.

Deep learning-based object detection is now commonly used in everyday life. These techniques
assist in identifying parts of objects within images and videos, supporting a wide range of tasks.
Examples include its application in autonomous driving, medical imaging, facial recognition,
cultural objects visualization, all of which depend heavily on object detection technology.
Recently, numerous studies have applied deep learning in those fields, autonomous driving [3],
[4], cultural objects visualization [5], [6], facial recognition [7], [8], sign language recognition [9],
[10], [11], and several other fields. There are many topics discussing sign language. However,
the application of object classification and real-time detection in indonesian sign language
specifically BISINDO is very limited. Sign language is different in every country, with their own
uniqueness and being developed from each of their own culture making object classification and
detection on BISINDO challenging. The uniqueness of each country's sign language, shaped by
cultural influences, means that classification and detection systems must be tailored specifically
to that language's characteristics. For BISINDO, the lack of high-quality datasets and models
optimized for real-time detection further complicates the development process.

The research was conducted using three different CNN architectures: InceptionV3, MobileNetV2,
and ResNet50 along with three optimizers: SGD (Stochastic Gradient Descent), AdaGrad, and
Adam, to evaluate which combination offers the fastest and most accurate classification
performance. Each model's architecture has unique strengths. InceptionV3 provides a balance
between speed and accuracy, ResNet50 is known for its depth and performance, and
MobileNetV2 is highly efficient, particularly for mobile deployment. For real-time detection,
MobileNetV2 SSD (Single Shot Detector) was used due to its lightweight and efficient nature,
making it ideal for Android devices. This ensures that the model can run smoothly without
consuming excessive resources, crucial for mobile applications. Our approach involves creating
a dedicated BISINDO dataset specifically for this study and fine-tuning the MobileNetV2 SSD
model for detecting Indonesian Sign Language (BISINDO). Through parameter optimization and
the application of techniques such as data augmentation and annotation, this research aim to
improve both the accuracy and speed of detection. Specifically, the contributions of this research
are as follows:

a. Evaluation of Convolutional Neural Network Architectures: Three different CNN
architectures were evaluated; InceptionV3, MobileNetV2, and ResNet50, to identify the
model that provides the highest accuracy and performance for classifying Indonesian Sign
Language (BISINDO).

b. Development of a BISINDO Dataset: A dedicated dataset for Indonesian Sign Language
(BISINDO) was introduced, incorporating extensive data augmentation and annotation.
This dataset is tailored specifically for real-time sign language detection.

c. Real-Time Sign Language Recognition: A real-time sign language recognition system
was introduced utilizing the MobileNetV2 Single Shot Detector (SSD). The model was
optimized and fine-tuned to achieve the highest accuracy with minimal loss for BISINDO
detection.
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2. Research Methods

The research workflow outlines distinct approaches for the classification and real-time processes
due to differences in methods and techniques used. The classification process workflow is split
into two phases: the general stage, which covers the process from dataset collection to
classification, and the specific stage, which details the model training process using various
hyperparameters to identify the optimal model-hyperparameter combination. In contrast, the
workflow for real-time sign language recognition consists of a single stage, as it involves only one
model, the MobileNetV2 Single Shot Multibox Detector (SSD), encompassing the entire process.
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Figure 1. Block Diagram for classification (a) and real-time detection workflow (b)
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Figure 1 above shows the general workflow diagram (a) for the classification process, where the
specific workflow focuses on explaining the Model Training process. While the real-time research
workflow diagram (b) involves the processed of a dataset collection and is distinct from the
classification workflow. The collected and augmented data undergoes an annotation process first,
enabling the model to focus on classifying only the regions containing alphabet class
characteristics.

Although both classification and real-time object detection models utilize convolutional neural
networks, their training processes differ significantly due to their distinct objectives and data
requirements. In classification, the model is trained to assign a single class label to an entire
image, using relatively simple inputs consisting of images and corresponding labels. In contrast,
real-time detection models such as MobileNetV2-SSD must simultaneously perform localization
and classification, requiring input images annotated with bounding boxes and class labels for
each object. it shifts from learning only global image features to learning multi-scale spatial
features necessary for detecting objects of varying sizes and positions. As a result, training a real-
time detection model demands more structured and diverse data, as well as a fundamentally
different learning approach compared to standard image classification.

In classification problems, the dataset is split into 70% for training, 20% for validation, and 10%
for testing to ensure reliable model performance reporting and avoid bias. In contrast, for real-
time object detection; where data labeling is expensive and real-world feedback is crucial, a more
practical 80% training and 20% validation split is used, omitting a separate test set where
performance is often validated directly in real-world deployment environments rather than through
a held-out test set.

2.1. Indonesian Sign Language (BISINDO)

With the development of Indonesian Sign Language among the deaf community, two standards
are currently recognized. The first is SIBI (Indonesian Sign System), created by the government,
and the second is BISINDO (Indonesian Sign Language), which is widely used by the deaf
community and developed naturally within Indonesia's deaf culture. BISINDO consists of 26
alphabets, corresponding to the Indonesian alphabet. These alphabets serve as the foundation
for this study, where a camera will recognize hand shapes resembling BISINDO alphabets in real-
time and produce text as output. BISINDO is chosen for this research due to its popularity within
the deaf community and to promote the BISINDO standard to the broader Indonesian public [12].
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2.2. Hyperparameter Tuning & Optimization

Hyperparameters, such as Batch Size and Learning Rate, along with Optimization methods,
significantly influence a model's performance. These parameters can affect outcomes,
determining whether the model achieves high or low accuracy, overfits or underfits, or aligns well
with the provided dataset.

Hyperparameters control the overall training process and are categorized into two types, model-
related and optimization-related. Model hyperparameters define the network's structure, while
optimization hyperparameters determine the training outcome, influencing whether the desired
results are achieved [13]. Thus, these parameters play a crucial role in producing outputs that
align with the dataset and meet the desired objectives.

2.3.CNN Model
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Figure 2. CNN Model Architecture

Convolutional Neural Network (CNN) is a popular deep learning technique commonly used for
object detection in images or videos, including applications in computer vision, facial recognition,
and biomedical fields. This popularity stems from CNN's ability to automatically extract relevant
features from images without human intervention (unsupervised) [14]. As can be seen in Figure
2 above, a CNN consists of layers that form the backbone of its processing, as illustrated in Figure
2. These layers include the convolution layer, which performs convolutions using predefined
kernels on the input image, and the pooling layer, which processes features from the convolutional
layer to retain information relevant to the input image. The pooling layer also reduces the
dimensionality of the features, making them more manageable. The output is then passed to the
fully connected layer, which classifies the input image into predefined classes [14].

2.3.1 ResNet50
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Figure 3. ResNet50 Diagram Block
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ResNet50, or Residual Network 50, is a convolutional neural network (CNN) architecture with 50
layers, designed to address the vanishing gradient problem. Comprising 25.5 million parameters,
ResNet50 employs skip connections between layers, enabling information to ‘bypass’ preceding
layers, thus preventing the loss of crucial data during training. This feature, illustrated in the
ResNet block diagram in Figure 3 above, allows the network to learn more complex features and
enhance accuracy. This characteristic is also utilized within InceptionResNet to mitigate the
vanishing gradient issue [14].

2.3.2 MobileNetV2
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Figure 4. MobileNetV2 Inverted Residual (Left) and Linear Bottlenecks (Right)

MobileNetV2 is an efficient deep learning model designed for image classification, focusing on
portability and reduced computational cost. Building on MobileNetV1, it introduces key
innovations such as Depthwise Separable Convolutions (DSC), Linear Bottlenecks, and Inverted
Residuals. As demonstrated in recent applications such as real-time face mask recognition [8],
as illustrated in Figure 4. Furthermore, MobileNetV2 can be effectively combined with Single Shot
Detector (SSD) and SSDLite frameworks, which are ideal for mobile deployment. SSD's
decoupled convolution process reduces computational costs and model size, maintaining strong
object detection performance. The integration of MobileNetV2 with SSD enables significant
advancements in mobile computer vision model development

2.3.3 InceptionV3
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Figure 5. InceptionV3 Factorization of Convolution Process

InceptionV3 is a convolutional neural network architecture designed for computer vision tasks. Its
innovation lies in the factorization of convolution processes, as illustrated in Figure 5, where large
convolutional layers are broken down into smaller, more efficient operations, reducing
computational costs. This approach maintains performance and effectiveness in image
recognition. InceptionV3 also enhances and stabilizes training performance by using auxiliary
classifiers to aid the training process and applying label smoothing as a regularization technique
to improve the model's generalization capabilities. These enhancements enable InceptionV3 to
achieve high accuracy in image classification [15].
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2.3.4 Single Shot Multibox Detector (SSD)
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Figure 6. Comparison of SSD and YOLO Architecture Model

The Single Shot MultiBox Detector (SSD) is a robust object detection model that leverages VGG-
16 as its base architecture. By incorporating additional feature layers and processing images at
multiple scales and aspect ratios, SSD achieves a high number of detections per class,
significantly enhancing its detection capabilities. This approach allows SSD to outperform models
like YOLO and Faster R-CNN in terms of both speed and accuracy. Notably, SSD's architecture
facilitates real-time applications by efficiently detecting objects at varying scales [16].

2.4.Evaluation Method

Evaluation assesses a model's problem-solving capabilities using metrics such as accuracy,
categorical cross-entropy loss, and validation coefficients. These metrics help evaluate
classification and image/gesture recognition tasks, and also identify overfitting or underfitting. In
this study, the evaluation focuses on Accuracy, Precision, and F1-score. Accuracy measures
overall correctness, Precision assesses true positives against false positives, and the F1-Score
balances both Precision and Recall.

Additionally, a Confusion Matrix is used to visualize prediction accuracy by showing true and false
results per class. While the traditional confusion matrix is commonly presented in a binary
classification setting (2x2 matrix), this study involves multiclass classification with 26 classes,
requiring an extended 26x26 confusion matrix. In this matrix, each row represents the actual
class, and each column represents the predicted class. Diagonal elements indicate correct
predictions, while off-diagonal elements represent misclassifications.

To compute Precision, Recall, and F1-Score in a multiclass context, these metrics are calculated
per class and then averaged using different strategies:

a. Macro averaging treats all classes equally by averaging metrics independently across
all classes.

b. Micro averaging aggregates the total true positives, false positives, and false negatives
across all classes before calculating the metrics.

c. Weighted averaging averages the metric for each class while taking into account the
number of true instances per class, which is useful when class distributions are
imbalanced.

These approaches provide a comprehensive evaluation of the model’s performance across all 26
classes rather than simplifying it to a binary scenario [17].
Below are the standard definitions:

a. TP (True Positive): The model correctly predicts a given class.

b. TN (True Negative): The model correctly predicts all other classes as not being the target
class.

c. FP (False Positive): The model incorrectly predicts a class when it's not present.

d. FN (False Negative): The model fails to predict the class when it is present.

Accuracy measures the proportion of total correct predictions:

A _ TP + TN (1
CCUraY = TP Y TN + FP + FN
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Precision measures the model's accuracy in identifying true positives among all predicted
positives.

TP )
TP + FP
The F1-Score is the harmonic mean of precision and recall.

Precision =

Recall - Precision (3)
F1—-Score =2 —mMM8M8M8M8m8m™
Recall + Precision

Recall quantifies the model's ability to identify all actual positive cases.

TP (4)

TP + FN

Categorical Cross Entropy Loss measures CNN model performance, also known as Log Loss,
used for multi-class classification, replacing Square Error Loss. It uses a softmax activation in the
output layer for probability distribution. This loss function assesses model training accuracy by
comparing predicted probabilities to the dataset [13].

e (5)
—log (cheSj)

Real-time recognition evaluation uses localization loss and confidence loss from training the
MobileNetV2 SSD model. The calculation is automatically generated during training. These
metrics indicate if the model has adequately learned the dataset.

F1 — Score =2

1 6
L(x,cl g = N (Leon £(%, €) + alige (%, 1, 8)) ©
TensorFlow Lite is a framework for running machine learning models on mobile devices. Models
must be converted to .fflite format with embedded label maps. The provided GitHub link:
https://github.com/tensorflow/examples/tree/master/lite/examples/object_detection/andro
id_play_services, enables real-time object detection using custom .tflite models.

2.5.Real-Time Recognition

The real-time model used is MobileNetV2 combined with the Single Shot Multibox Detector (SSD),

resulting in the MobileNetV2 SSD model. This model is then converted for deployment on a mobile

system built using the TensorFlow Lite framework for Android. There are experimental scenarios

for the classification process, involved a combination of models, hyperparameters, and optimizers.
Table 1. Experimental Scenarios for Classification Process

No Model Optimizer Early Stopping Patience
1 ResNet50 AdaGrad 7
2 ResNet50 Adam 7
3 ResNet50 SGD 7
4 InceptionV3 AdaGrad 7
5 InceptionV3 Adam 7
6 InceptionV3 SGD 7
7 MobileNetV2 AdaGrad 7
8 MobileNetV2 Adam 7
9 MobileNetV2 SGD 7

Table 1 above presents nine combinations resulting from pairing different models with optimizers.
Each of these combinations will be evaluated, and the model achieving the highest accuracy will
be selected as the best-performing model. The early stopping mechanism was set with a patience
of 7 epochs across all model variations. This value was selected based on a balance between
preventing overfitting and allowing the model sufficient time to continue learning. A patience value
that is too low may cause training to stop prematurely due to minor fluctuations in validation
performance, especially in complex models or noisy datasets. On the other hand, a very high
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patience may delay convergence unnecessarily, leading to overfitting or wasted training time.
Through initial experimentation, a patience value of 7 was found to provide the model enough
room to improve while still reacting quickly to performance stagnation on the validation set.

3. Result and Discussion
3.1 Dataset

This research utilized a combined dataset comprising images from online sources (Kaggle) and
personal collections, focusing on BISINDO sign language. The Kaggle dataset contributed 312
images, with 12 images per class across 26 alphabetical classes. To expand the dataset's
diversity and size, these were supplemented with 5590 personally captured smartphone images,
each at a resolution of 2544x3392 pixels, with 215 images per class. This resulted in a total
dataset of 5902 images spanning the 26 classes.
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Figure 7. Dataset Souced fom Kaggle (Top) and Personally Compiled Dataset (Bottom)

The personal dataset was meticulously captured with varying ISO and shutter speed settings to
accommodate diverse lighting conditions, from 50W lamp assistance to low-light, high-light, and
natural lighting. Each configuration yielded at least 30 images. Each class of the personal dataset
was then split into 166 training images and 49 testing images to ensure robust model training and
evaluation.

Table 2. Dataset Collection Configuration

No Shutter Speed ISO Total Images Lamp Status
1 1/90s 125 30 Yes

2 1/125s 320 30 Yes

3 1/180s 100 35 Yes

4 1/125s 125 30 Yes

5 1/125s 400 30 Yes

6 1/50s 1600 30 No

7 1/60s 1600 30 No

The combined dataset exhibited diverse characteristics, including varying backgrounds and
lighting conditions. To enhance the dataset's size and variability, data augmentation techniques
were employed on the Kaggle dataset, increasing the initial 12 images per class to 45.
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Figure 8. Data Annotation in Preprocessing Step

Upon collection, the personally captured images, initially featuring a 3:4 aspect ratio, were
preprocessed to a 600x600 pixel resolution. This adjustment was necessary to align with the input
requirements of the MobileNetV2 Coco 300x300 pretrained model, facilitating subsequent
annotation and model training.

To increase the size and variability of the dataset, data augmentation techniques were applied,
expanding the initial 12 images per class to 45, resulting in a total of 1,170 augmented images.
For the image classification task, the combined dataset was partitioned into 70% for training, 20%
for validation, and 10% for testing. This three-way split ensures that the model is trained and fine-
tuned on separate subsets, with a completely independent test set used for final evaluation
providing a robust measure of the model's generalization on unseen data.

In contrast, for the real-time object detection task using TensorFlow Lite, the dataset was divided
into 80% for training and 20% for validation, without a dedicated test set. This simplified split is
commonly used in real-time scenarios, where annotated data (such as bounding boxes) is costly
and performance is often assessed directly in deployment environments rather than through a
held-out test set. This tailored partitioning approach aligns with the specific requirements and
evaluation methods of each task.

Data augmentation was applied to both the classification and real-time detection datasets to
enhance variability and prevent overfitting, with particular emphasis on real-time object detection
tasks. Models like MobileNetV2-SSD require a larger and more diverse dataset due to the added
complexity of localizing and classifying multiple objects within an image, unlike classification tasks
that predict a single label. Although MobileNetV2-SSD is designed for lightweight and fast
inference on mobile devices, its architecture relies heavily on datasets that capture a wide range
of variations in object size, orientation, lighting, occlusion, and background context. Without
sufficient or diverse data, the model risks poor generalization, missed detections, or inaccurate
bounding boxes during real-world deployment. Therefore, to ensure reliable performance in real-
time scenarios, a larger volume of annotated images is essential, further justifying the use of
aggressive data augmentation.
Table 3. Dataset Information for Classification Process

Dataset Name 26 Classes Total
Real Dataset 12 Images per class 312 Images
Augmented Dataset 45 Images per class 1.170 Images
Private Dataset 166 Images per class 4.316 Images

Table 4. Dataset Information for Real-Time Detection Process

Dataset Name 26 Classes Total
Real Dataset 215 Images per class 5.590 Images
Augmented Dataset 215 Images per class 5.590 Images
Private Dataset 1074 Images per class 27.924 Images
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The augmentation applied in this study was performed on all dataset. The technique used was a
light augmentation strategy focused on adjusting image brightness, implemented via
ImageDataGenerator with a brightness_range of [0.7, 1], rescale=1./255, and fil_mode='reflect'.
This approach was chosen to simulate realistic lighting variations while maintaining the original
structure and features of the input image [18].

Heavier augmentation techniques such as rotation, zoom, horizontal flipping, or warping were
intentionally not applied in this case. This decision was to preserve class-defining features. Since
the dataset contains images where object orientation and positioning are critical for correct
classification (e.g., gestures or fine-grained object details), aggressive transformations could
distort key features, potentially confusing the model. Thus, the augmentation strategy was
deliberately kept minimal to improve generalization without overcomplicating the feature space or
reducing model stability.

3.2 Model Training and Real-Time Detection

Model configuration, managed via the pipeline.config file, allows customization of MobileNetV2
SSD, including dataset classes, image dimensions, hyperparameters, CNN layers, and fine-
tuning checkpoints. Training commences after configuration, dataset preparation, and TFRecord
creation. As seen in Figure 9 below, real-time detection is performed using a laptop webcam, with
accuracy impacted by image size discrepancies between the dataset and capture device.
OpenCV is used to load model checkpoints and integrate them for frame-by-frame webcam
detection.

A

Figure 9. Real-Time Detection Result

After training, the MobileNetV2 SSD model's checkpoints are converted to .pb (saved_model)
format, then to .tflite for mobile use. Metadata is repopulated to remap classes for .tflite
compatibility. The .tflite model is then integrated into the Android app by adding a constant
reference and placing it in the assets folder. Real-time detection is achieved using the device's
camera, with results displayed on screen and a detection history logged. This process optimizes
the trained model for mobile deployment, enabling real-time object detection on Android devices,
as can be seen in Figure 10 below.
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Figure 10. Real-Time Detection Using TensorFlow Lite (Left) with a C Labeled Image (Right)

Figure 10 shows the real-time detection result where the detected object is the alphabet class C
with an accuracy of 97%. This indicates that the model has been successfully loaded and has
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successfully detected the Indonesian Sign Language alphabet class based on adequate lighting
conditions with a relatively neutral background, in accordance with the initial goal.

3.3 Result Analysis

Detection results were analyzed to evaluate accuracy and mean Average Precision (mAP) using
TensorFlow Lite Android. The analysis for real-time recognition was divided into overall model
performance and light level (lux) impact, and the analysis was divided based on each model
combination and its hyperparameters. Overall mAP was calculated by averaging per-class
detection accuracy. Tests were conducted under controlled lighting similar to the dataset.

Table 5. mAP Analysis Result of the Dataset
No Alphabet Classes Average Precision (AP)

1 A 92%
2 B 82%
3 C 95%
4 D 86%
5 E 84%
6 F 77%
7 G 86%
8 H 88%
9 I 96%
10 J 88%
11 K 92%
12 L 94%
13 M 94%
14 N 92%
15 O 96%
16 P 88%
17 Q 92%
18 R 96%
19 S 96%
20 T 88%
21 u 94%
22 \Y 92%
23 w 93%
24 X 89%
25 Y 94%
26 z 85%
mAP 90.34%

Lux level analysis measured optimal detection under specific lighting conditions, using a Samsung
Galaxy S24's light sensor and the Lux Light Meter Pro app. Measurements were taken 30-40cm
from the light source.

Table 6. Lux Level Analysis

No Lux Level mAP
1 ~900 91%
2 ~750 84%
3 ~600 75%
4 ~400 68%
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Figure 11. Confusion Matrix of The Best Performing Model. Inception SGD (a), MobileNetV2
Adam (b), and ResNet50 SGD (c)

To provide a clearer picture of each model’s classification performance, Figure 11 presents the
confusion matrices of the best-performing configurations for InceptionV3, ResNet50, and
MobileNetV2, respectively. These matrices visualize the prediction accuracy across all 26 classes
and highlight how well each model generalized to the validation data. As seen in the confusion
matrices, the top-performing models exhibit strong diagonal alignment, indicating high true
positive rates and minimal misclassification.

Following this, we present the overall classification accuracy achieved by each model-optimizer
combination.

Overall Accuracy of each model: InceptionV3, MobileNetV2 and ResNet50, combined with three
optimization algorithms: AdaGrad, Adam, and SGD. Where the InceptionV3 with SGD optimizer
achieved the highest accuracy and MobileNetV2 with AdaGrad achieved the lowest accuracy.

Table 7. Classification Accuracy of Each Model Combination

AdaGrad Adam SGD
Accuracy VallLoss | Accuracy VallLoss Accuracy Val Loss
InceptionV3 98.4% 0.1268 99.2% 0.0181 100% 0.0362
ResNet50 98.8% 0.1528 98.7% 0.0523 99.3% 0.0185
MobileNetV2 96.4% 0.2760 99.7% 0.0091 98.6% 0.0584

The results presented in Table 7 were obtained using a set of optimized hyperparameters that
were consistently applied across all three models in this study. These hyperparameters were
selected based on empirical experimentation to balance training efficiency and model
generalization. The final configuration included an input image size of 64x64x3, 26 output
classes, a batch size of 16, and a training duration of 35 epochs. The models were compiled using
the selected optimizer, Sparse Categorical Crossentropy loss, and evaluated with accuracy and
balanced sparse categorical accuracy metrics. This configuration was chosen after observing
stable convergence, strong validation performance, and minimal signs of overfitting. Therefore,
the results shown represent the models' best performance under these optimized hyperparameter
settings.

Although the model achieved 100% accuracy in one evaluation scenario, this result should be
interpreted with caution. Perfect accuracy often raises concerns in machine learning, as it may
indicate potential issues such as overfitting, data leakage, or a lack of diversity in the test set. In
this case, the dataset consisted of well-preprocessed and augmented images with a relatively
small and controlled test set, which may have led to overly optimistic performance. Additionally,
the confusion matrix showed perfect diagonal alignment, suggesting that the classes were well-
separated, but it remains possible that this is due to data simplicity or a lack of challenging
samples. To validate the robustness of this performance, further evaluation on larger, more
diverse, or unseen real-world datasets would be necessary. Therefore, while the 100% accuracy
result is reported, it is treated cautiously and not taken as a definitive measure of the model's
generalization capability.

Despite InceptionV3 achieving the highest classification accuracy, it is not the most suitable model
for real-time or mobile deployment due to its significantly larger size and slower inference speed.
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A comparative evaluation of model performance showed that MobileNetV2 consistently achieved
the fastest inference times, the highest FPS, and the smallest model size, making it the most
efficient and practical choice for real-time applications. To enable both classification and object
localization, MobileNetV2 was integrated with the Single Shot Multibox Detector (SSD)
framework. This combination provides a strong balance between accuracy, speed, and
deployability, allowing the model to perform real-time gesture detection efficiently on resource-
constrained devices.
Table 8. Comparative Evaluation of Model Efficiency for Real-Time Detection

Optimizer Size (MB) Inference Time (ms) FPS

adagrad 20.45 84.97 11.77

MobileNetV2 adam 30.25 84.31 11.86
sgd 10.35 86.10 11.62

adagrad 184.72 107.54 9.30

ResNet50 adam 276.60 105.28 9.50
sgd 92.51 104.96 9.53

adagrad 171.57 110.20 9.07

InceptionV3 adam 256.69 117.29 8.53
sgd 86.04 114.04 8.77

Table 8 summarizes the performance of each model-optimizer combination in terms of
classification accuracy, model size, inference time, and FPS. While accuracy was comparable
across models, MobileNetV2 demonstrated the lowest inference latency and highest FPS,
supporting its selection for real-time deployment.

4. Conclusion

Previous research indicates that combinations of InceptionV3, ResNet50, and MobileNetV2 with
SGD, Adagrad, and Adam optimizers demonstrate significant potential and excellent results,
particularly with the SGD optimizer, in real-time classification and detection of BISINDO sign
language. The highest accuracy achieved with the SGD optimizer reached 100%, while the lowest
accuracy was 96.4% with MobileNetV2 using the Adagrad optimizer. For future research
addressing similar topics, whether BISINDO sign language or sign language in general, the model
experiments conducted in this study can be used as a reference. Through these experiments,
further research can more deeply explore the models and hyperparameters most suitable for
related case studies, such as using newer models and combining it with hyperparameters
optimization of other methods, and utilizing larger datasets to improve efficiency.
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