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Abstract

Stunting is a critical public health issue primarily caused by malnutrition, which hampers the
growth of children. This paper evaluates the performance of two machine learning models, K-
Nearest Neighbors (KNN) and Decision Tree, in classifying stunting status in toddlers. Three
strategies for handling class imbalance, no sampling, Synthetic Minority Over-sampling
Technique (SMOTE), and random undersampling, are compared to enhance the detection of the
minority class (stunting). The results demonstrate that KNN with SMOTE provides the most
effective and balanced performance in stunting detection, as evidenced by achieving an F1-score
of 0.99. This value indicates the model's superior ability to balance precision and recall for the
minority class. Conversely, although the Decision Tree model without sampling techniques
achieved an accuracy 98.64%, its performance in stunting detection is less reliable due to a lower
F1-Score. The application of random under sampling caused a significant decline in performance
for both models. These findings underscore the effectiveness of SMOTE in handling class
imbalance for stunting detection and provide valuable insights into the application of machine
learning techniques in addressing public health issues.

Keywords: Class Imbalance, Decision Tree, K-Nearest Neighbors, Machine Learning, Random
Under Sampling, SMOTE, Stunting

1. Introduction

Stunting is a condition that affects the growth of toddlers, primarily caused by malnutrition. As a
result of stunting, a child's height becomes shorter than that of other children of the same age [1]
Nutritional deficiencies in toddlers begin during pregnancy and continue after birth, with stunting
typically becoming noticeable after the child reaches the age of two [2]. Several factors can
contribute to stunting in children, such as poor parenting practices, inadequate antenatal care for
mothers, and a lack of nutritious food. In addition to these internal factors, external factors such
as social, economic, cultural, and political influences also play a role in causing stunting [3].

As of 2020, 149 million toddlers worldwide experienced stunting, with the majority in Asia (54.8%)
[4]. Reducing stunting in Indonesia is a key focus of government policy, as highlighted in
Presidential Regulation No. 72 of 2021 on the Acceleration of Stunting Reduction. The current
stunting prevalence is 21.6%, with a target to reduce it to 14% by 2024 [5]. In line with this, a
campaign program providing free lunch and milk for toddlers, pregnant women, and children—
benefiting a total of 82.9 million recipients—aims to tackle stunting and support Indonesia's vision
of Golden Indonesia 2045 [6].

Stunting is a significant health issue as it can hinder the optimal growth and development of
children. The main factors influencing a child's development include health conditions and
nutritional intake, including malnutrition during pregnancy, which can affect fetal growth. If these
factors persist until the child reaches the age of two, the child is at risk of experiencing delays in
growth and development, which is reflected in weight and height that do not meet the standards
set by the WHO [7]. Stunting can reduce a child's intelligence and physical capacity, which can
lower productivity, slow economic growth, and exacerbate poverty. Furthermore, the impact of
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stunting can result in a weakened immune system and increase the risk of chronic diseases, as
well as reproductive disorders in women during adulthood [8].

With the advancement of technology, various studies have shown that machine learning (ML)
methods have been effectively used to classify stunting in children in regions such as Africa [9].
Machine learning methods have proven to be superior in classification problems compared to
traditional statistical methods. ML offers greater flexibility, can handle multidimensional
correlations, and can utilize a larger set of predictors [10].

His paper applies two machine learning methods, namely K-Nearest Neighbors (KNN) and
Decision Tree. KNN was chosen for its ability to generate accurate and clean data, as well as its
effectiveness when implemented on sufficiently large datasets [11]. The Decision Tree method
was used due to its ability to identify and analyze the relationships between various factors
affecting a particular issue, and to help find the best solution by considering these factors [12].
The KNN method has previously been successfully applied to classify stunting status in toddlers
in Bojongemas Village. A paper by Sri et al. (2024) using data from 503 toddlers with attributes
such as age, weight, height, and nutritional status showed that the KNN model was able to classify
stunting status with an accuracy rate of 92%, thus proving effective in monitoring child growth
[13]. Additionally, the Decision Tree method was successfully applied by Amanda et al. (2023).
This paper aimed to implement Decision Tree and SVM algorithms to predict the risk of stunting
in Dumai City, using 18 attributes and 5021 data points. The Decision Tree method achieved an
accuracy of 96.15%, which was higher than the accuracy of the SVM method, which only reached
62.48%, thus making the Decision Tree method more effective in predicting the risk of stunting
[14].

In this paper, the dataset used shows an imbalanced class, where toddlers without stunting
significantly outnumber those with stunting, potentially affecting classification results. A
comparison is made between methods with and without sampling techniques to tackle this issue.
To improve stunting classification accuracy, sampling techniques such as SMOTE and Random
Under Sampling are used, as they are effective in handling class imbalance. SMOTE has
demonstrated improvements in the accuracy of KNN, Decision Tree, and Random Forest models
in employee promotion classification tasks [15]. while RUS has increased both the accuracy and
precision of KNN in loT attack detection [16]. and improved Decision Tree performance in forest
fire prediction, achieving high accuracy and ROC values [17]. Optimal hyperparameter selection
is crucial to obtaining good model accuracy. Grid Search using Cross Validation provides ease in
testing each model parameter without having to perform manual validation one by one, and it can
automatically find the best hyperparameter combination [18]. Therefore, the integration of
SMOTE, RUS, and GridSearchCV techniques in this paper aims to improve the accuracy and
reliability of the model in classifying stunting.

This paper aims to implement the KNN and Decision Tree methods for classifying stunting in
toddlers and evaluate their performance to identify the most effective algorithm. It also seeks to
determine the factors influencing the performance of both algorithms. Using a machine learning
approach, this paper aims to create an accurate and reliable classification model to help
healthcare professionals, and the government detect and address stunting more effectively. By
identifying the causes and impacts of stunting and supporting nutrition program monitoring, the
research contributes to stunting prevention and improving child health quality in Indonesia.

2. Reseach Methods

The research methodology starts with a literature review on stunting and classification algorithms.
The dataset, from Bojongsoang Public Health Center, focuses on toddler stunting data. After data
exploration and preprocessing (including cleaning and feature selection), both downsampling
(Random Under Sampling) and upsampling (SMOTE) are applied to address class imbalance.
The data is split into 80% training and 20% test sets. Hyperparameter tuning is performed using
GridSearchCV, followed by the implementation of KNN and Decision Tree models. These models
are evaluated on accuracy, precision, recall, and F1-score. The process is repeated until all
scenarios are tested, with the best model selected. The research flowchart is shown in Figure 1.
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Figure 1. Research Flowchart

2.1. Dataset

The dataset used in this paper, obtained from the Bojongsoang Health Center in CSV format,
covers data from August 2024, coinciding with the Toddler Weighing Month and Vitamin A
administration activities, ensuring high community participation and completeness. This data
forms the basis for developing a stunting detection model. Yuxiang et al. (2024) used gender and
age in months to predict stunting risk [18]. Karisma et al. (2022) analyzed birth length and weight
in relation to stunting [19]. and Sri et al. (2024 ) applied weight and height for stunting classification
using machine learning [13]. In this paper, seven features are used, including Gender, Birth
Weight, Birth Length, Weight, Height, Age in Months, and Result, where the Result contains a
value of 1 for stunting and 0 for normal, which is generated from the Z-score of Height-for-Age.

2.2. Stunting

Stunting is a condition commonly caused by malnutrition (including deficiencies in protein, energy,
and micronutrients), which can affect a baby’s development from the prenatal stage up until birth.
Several factors contribute to stunting, such as the mother's body size, the nutrition received during
pregnancy, and fetal growth [20]. Factors related to stunting can be observed from the baby's
length, which is categorized as either short or very short, determined by calculating the Z-score.
Based on the Z-score calculation, there are two categories short, with a range between -3 SD and
-2 SD, and very short, with a Z-score below -3 SD [21]. The formula for calculating the Z-score
can be found in [21].

2.3. K-Nearest Neighnors (KNN)

The K-Nearest Neighbors (KNN) algorithm is known as a non-parametric data mining algorithm
that can be applied to classification and regression tasks. KNN is a supervised learning algorithm
that requires training data to classify an object based on its proximity to other data points [22].
The KNN algorithm identifies new data by measuring the shortest distance to the K previously
selected neighbors. The class prediction for the new data is made by identifying the most frequent
class among the nearest neighbors after all K neighbors are accounted for [23]. The KNN
algorithm has been proven to be effective in classifying data [13]. The most used distance
measure in the KNN algorithm is Euclidean distance. The formula can be found in [23].

2.4. Decision Tree

The Decision Tree algorithm uses a flowchart-like structure, where each node represents a
decision point based on attribute tests of existing variables. It is widely used in classification and
prediction analysis, producing a clear and structured model [15]. The decision tree applies a
series of rules, represented as branches, to make decisions. At each node, it splits the dataset
based on the feature with the highest information gain. This process continues iteratively until
reaching the terminal leaf nodes, where the final decision is made based on the dominant class
in that node [24]. The goal of the Decision Tree method is to visualize and generate decisions
based on specific rules and conditions [25]. The general formula for the Decision Tree can be
found in [25].
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2.5. Synthetic Minority Oversampling Technique (SMOTE)

SMOTE (Synthetic Minority Over-sampling Technique) addresses class imbalance by increasing
data points in the minority class. It creates synthetic samples through random linear combinations
of nearby minority class data in the feature space, generating new instances that resemble the
minority class without direct duplication [26]. The SMOTE technique begins by randomly selecting
samples from the minority class and identifying their KNN. The distance between the sample and
each nearest neighbor is then calculated. Synthetic data is generated by interpolating between
the selected sample and its neighbors, using random values between 0 and 1 to scale the
differences. This process is repeated until the number of samples in the minority class is
increased to match that of the majority class [27].

2.6. Random Under-Sampling (RUS)

Random Under Sampling (RUS) is a method that randomly reduces the number of samples from
the maijority class to balance it with the minority class, making the dataset more proportional
before being used in model training. This technique aims to address data imbalance, which can
affect the model's performance, by reducing data from the majority class, thereby achieving a
more balanced class distribution [16]. This sampling technique is used to randomly decrease the
number of instances in the majority class until the class distribution becomes balanced [17]. It is
effective in improving the performance of machine learning models, allowing for more optimal
classification of both classes [16].

2.7. Grid Search Cross Validation

Grid Search Cross-Validation is a popular method for tuning hyperparameters in machine learning
classification algorithms, where all combinations of hyperparameters are tested using cross-
validation to find the best model. Although time-consuming, this method is widely used due to its
ability to select the combination of parameters that produces optimal predictions [28]. This
technique allows for the automatic exploration of various hyperparameter combinations, speeding
up the search for the optimal hyperparameters without manual experimentation, and resulting in
better-performing models [29][30].

In this paper, hyperparameter optimization was performed on two models with different parameter
sets. The KNN model depends on three main hyperparameters. The n_neighbors parameter is
crucial for determining the number of nearest neighbors (k value) that will serve as the basis for
classification. Neighbor determination is based on the metric that functions to measure distance,
this paper employs the Euclidean metric to calculate proximity between data points. Finally,
weights regulate the voting scheme of these neighbors, where uniform provides equal influence
on all neighbors, while distance gives greater influence on neighbors with closer proximity [31].
Meanwhile, the Decision Tree model is governed by a series of hyperparameters to build an
efficient structure. The quality of node splitting is determined by the criterion such as Gini or
Entropy that measures data purity, while the splitting process is controlled by the splitter using
either best or random approaches. To prevent overfitting and control complexity, three main
parameters are utilized max_depth to limit tree depth, min_samples_split and min_samples_leaf
to establish the minimum number of data points required for splitting and leaf formation.
Additionally, the class_weight parameter is tested with two options None, which treats all classes
equally, and balanced, which automatically adjusts weights to provide greater attention to minority
classes to handle imbalanced data [32].

The selection of hyperparameter ranges was conducted with the objective of testing various
conditions and finding the most suitable combination. For parameters such as n_neighbors in
KNN and max_depth in Decision Tree, a range of 1 to 10 was chosen to test various levels of
model complexity, from the simplest to the most complex. This approach enables the identification
of optimal balance, where the model is neither too rigid (underfit) nor too specific (overfit). Similarly,
ranges of 2-10 for min_samples_split and 1-10 for min_samples_leaf were tested to ensure that
the rules formed by the decision tree have sufficient data points, making the results more reliable.
Meanwhile, for categorical parameters such as weights, criterion, splitter, and class_weight, all
standard options were tested with the aim of comparing different strategies, for instance, whether
distance ‘weight’ performs better than ‘uniform’, or whether ‘gini’ criterion is more effective than
‘entropy’, to determine which approach is most suitable for the data characteristics in this paper.
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2.8. Performance Evaluation Metrics

The confusion matrix is used to measure the performance of a classification model by comparing
the predicted results with the test data in four main categories TP (True Positive), TN (True
Negative), FP (False Positive), and FN (False Negative). Model performance is assessed using
several key metrics. Precision focuses on the accuracy of positive predictions, measuring the
proportion of items flagged as 'positive’' that were correct. In contrast, recall (or sensitivity)
measures the model's ability to identify all true positive instances within the dataset. To provide a
balanced view between these two, the F1-Score is utilized as the harmonic mean of precision and
recall, it is an especially valuable metric for imbalanced datasets. Accuracy, meanwhile, offers a
more general measure of the ratio of all correct predictions to the total number of instances [27].
Even in the case of imbalanced datasets, this accuracy may provide a less accurate
representation of the model's performance. The related formula can be found in [27].

3. Result and Discussion

In this part of the paper, a thorough analysis of the data, including visualization, preprocessing,
and splitting to prepare it for modeling. Class balancing techniques, such as SMOTE and RUS,
were used alongside a non-sampling approach for comparison. Two modeling algorithms, KNN
and Decision Tree, were applied to predict stunting in children, and their performance was
compared to assess class imbalance handling and prediction accuracy.

3.1. Data Visualization

The data visualization reveals important insights into the distribution of children's height-for-age
categories and nutritional status, highlighting a significant imbalance between stunted and non-
stunted children. Shows varying nutritional conditions, such as undernutrition, risk of overnutrition,
and obesity. The clear imbalance emphasizes the need for appropriate sampling techniques to
address this issue. Additionally, the distribution of variables like weight, height, age, and the Z-
score for height-for-age reveals outliers and variations, indicating areas requiring further attention
in managing children's nutrition. These findings form a solid basis for analyzing factors influencing
children's physical and nutritional conditions in the context of stuntinagng.

Status

== Normal: 7250 children (98.5%) »|
W Stunting: 114 children (1.5%) »l
(a) (b)
Figure 2. (a) Comparison of normal and stunted children. (b) Category Distribution of
Stunting.

Figure 2(a) shows the distribution of stunting status in children within the height-for-age category.
Most children (98.5%) fall into the normal category, with only 1.5% of children experiencing
stunting. This highlights a significant imbalance between the number of children who are stunted
and those who are normal. Meanwhile, Figure 2(b) illustrates the distribution of stunting based on
the height-for-age category, where 80 children are classified as short and 34 children as very
short. This indicates a significant difference in the physical growth conditions of children based
on these categories.
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Figure 3. (a) Distribution of selected variables. (b) Distribution of variables for stunting class
Computer

Figure 3 (a) shows the distribution of weight, height, age, and Z-Score for height-for-age (TB/U).
The weight distribution has some high-value outliers, while the height distribution shows low-value
outliers. Age data is consistent with no significant outliers. The Z-Score for height-for-age
distribution has many extreme outliers, indicating values far from the median and quartiles. Figure
3 (b) presents the stunting-related variables (weight, height, age, and Z-Score). The weight and
height distributions have a narrow range with few outliers, while the Z-Score shows a few very
low outliers, indicating severe stunting. The age distribution shows no significant outliers,
suggesting consistency in age data.

In this paper, most children with stunting were found to have a normal nutritional status (82.5%).
However, a small proportion were categorized as underweight (12.3%) or at risk of overweight
(3.5%). Additionally, a very small percentage of children were identified as obese (0.9%) or
experiencing overnutrition (0.9%). These findings suggest that while most children with stunting
appear to receive adequate nutrition, there remains a notable variation in nutritional status. This
highlights the need for continued attention to children who are at risk of other nutritional
imbalances.

3.2. Data Preprocessing

The data cleaning and transformation process involved several steps to ensure quality and
consistency. First, irrelevant columns, such as personal and administrative information, were
removed. Numerical data in columns like 'BB Lahir' (birth weight) and 'Berat' (weight) were
converted to numeric types after removing commas. The 'Usia Saat Ukur' (age at measurement)
column, initially text-based, was transformed into months for easier analysis. Rows with an age
of 0 months were deleted, and missing values and irrelevant hyphens were removed. Duplicate
rows were also eliminated to prevent bias, and important columns were selected, with categorical
variables like 'JK' (gender) converted to numeric values. Finally, commas in the 'Tinggi' (height)
and 'Berat' (weight) columns were replaced with periods for proper conversion. The data is now
ready for further analysis.

3.3. Data Splitting

The data is split into 80% training data and 20% testing data. This division allows the model to
learn patterns from the training data and be evaluated on its ability to make predictions on unseen
testing data. Table 1 shows the distribution of sample counts for each class in both the training
and testing datasets.

Table 1. Data Splitting Results without Sampling Technique
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Result Normal Stunting Total
Training Data 5804 87 5891
Testing Data 1446 27 1473

Table 2. Data Splitting Results with SMOTE

Result Normal Stunting Total
Training Data 5826 5774 11600
Testing Data 1424 1476 2900

Table 3. Data Splitting Results with RUS

Result Normal Stunting Total
Training Data 94 88 182
Testing Data 20 26 46

Table 1 shows the data split without sampling technique, highlighting the imbalance between the
Normal and Stunting classes in both training and testing data. Table 2 displays the use of SMOTE,
which balances the sample sizes between the classes. Table 3 presents the results of RUS, which
reduces the majority class (Normal) to achieve balance, though it reduces the total data amount.

3.4. Classification Model Performance Analysis

In this section, the results of KNN and Decision Tree model implementation in three imbalanced
data handling scenarios are presented. Before evaluating final performance, a tuning process
using GridSearchCV was conducted to find the best hyperparameter combination for each
scenario. The results of this tuning process, which served as the basis for model configuration in
testing, are summarized in Table 4. recognizable.

Table 4. Best Hyperparameter Tuning Results with GridSearchCV
Technique
Sampling Model Best Hyperparameter

Without KNN metric: 'euclidean’, n_neighbors: 3, weights: 'distance’
Sampling Decision class_weight: None, criterion: 'entropy’, max_depth: 9,
Technique Tree min_samples leaf: 1, min_samples_split: 6, splitter: 'best’

KNN metric: 'euclidean’, n_neighbors: 2, weights: 'uniform’

SMOTE Decision class_weight: None, criterion: 'gini', max_depth: 10,

Tree min_samples_leaf: 1, min_samples_split: 3, splitter: 'best'

KNN metric: 'euclidean’, n_neighbors: 5, weights: 'uniform'
RUS Decision class_weight: 'balanced, criterion: 'entropy', max_depth: 10,

Tree min_samples_leaf: 2, min_samples_split: 7, splitter: 'best’

Using the optimal hyperparameter configuration from Table 4, each model was then evaluated for
its performance. A comprehensive performance comparison of all scenarios, including precision,
recall, F1-Score, and accuracy, is presented in Table 5.

Table 5. Model Performance Classification Report

Techni_que Model Class Precision Recall F1-Score Acct"acy
Sampling (%)
1 0.81 0.33 0.47
Without KNN 0 0.98 0.99 0.99 98.64%
Sampling Avg 0.90 0.66 0.73
Technique
isi 1 0.73 0.40 0.52
Decision 98.64%
Tree 0 0.98 0.99 0.99
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Avg 0.86 0.70 0.75
1 0.98 0.99 0.99
KNN 0 0.99 0.98 0.99 99.17%
Avg 0.99 0.99 0.99
SMOTE
1 0.96 0.98 0.97
DeTC'S"’” 0 0.98 0.96 0.97 97.37%
ree
Avg 0.97 0.97 0.97
1 0.91 0.80 0.85
KNN 0 078 0.90 0.83 84.78%
Avg 0.84 0.85 0.84
RUS
1 0.87 0.80 0.84
Decision 0 0.77 0.85 0.80 82.60%
Tree
Avg 0.82 0.82 0.82

In this paper, the performance of KNN and Decision Tree models was compared using three
approaches to handle class imbalance, without sampling technique, with SMOTE (Synthetic
Minority Over-sampling Technique), and with RUS. Model performance evaluation in this paper
prioritized the F1-Score metric, particularly for the stunting class (class 1). Given the highly
imbalanced data condition (1.5% stunting vs 98.5% normal), the accuracy metric can provide
misleading results. F1-Score, which balances precision and recall, serves as a far more reliable
benchmark for assessing the model's ability to identify stunting cases, which is the primary
detection target.

As presented in Table 5, there are drastic performance differences across scenarios. In the No
Sampling scenario, an anomaly occurred where despite both models achieving very high
accuracy of 98.64%, the F1-Score for the stunting class was extremely low, at 0.47 for KNN and
0.52 for Decision Tree. Recall values of only 0.33 for KNN and 0.40 for Decision Tree provide
clear evidence of model failure, where more than half of stunting cases were not successfully
detected. This demonstrates that without special handling, even optimized models will be highly
biased and tend to ignore minority classes.

The most significant and effective improvement was achieved through the SMOTE technique. A
deeper analysis of the tuning results in Table 4 can explain why this approach succeeded. The
KNN model with SMOTE achieved a nearly perfect F1-Score of 0.99 with hyperparameter
configuration k=2. This very small k value indicates a strong synergy between SMOTE and the
fundamental nature of KNN. SMOTE successfully created dense and informative stunting data
clusters, allowing KNN to make highly accurate decisions by examining only its two nearest
neighbors. The Decision Tree model with SMOTE also showed remarkable improvement with an
F1-Score of 0.97. Its best hyperparameter, max_depth=10, indicates that this model has the
capacity to learn complex patterns. The failure in the no-sampling scenario was not due to model
incapability, but rather due to insufficient data to build representative rules. SMOTE provided the
raw material needed for the decision tree to form effective and unbiased data partitions.

The RUS technique proved less optimal. Although F1-Score improved compared to no sampling,
its performance was far below SMOTE. The sharp decrease in accuracy to 84.78% for KNN and
82.60% for Decision Tree indicates crucial information loss. This is reflected in the KNN tuning
results, where the optimal k value jumped to 5. This indicates that after many majority data points
were removed, the data space became sparser, forcing the model to search for neighbors in
broader and less reliable areas. An interesting finding in the Decision Tree with RUS scenario
was the selection of class_weight balanced as the best hyperparameter, despite the training data
already being made nearly balanced. The explanation for this case lies in the GridSearchCV
mechanism that uses cross-validation. During the tuning process, training data is split again into
several folds, and this random division does not guarantee that each fold has perfect class
balance. Therefore, class_weight 'balanced' was selected as the best strategy, this setting
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functions as a safeguard that keeps the model alert and provides more attention to minority
classes to address imbalances that may randomly emerge during the training process.

Overall, the analysis shows that model success depends not only on tuning, but also on the
compatibility between the model's fundamental nature and the data structure modified by
sampling techniques. SMOTE's success lies in its ability to build clearer data patterns for minority
classes, while RUS's failure is caused by the risk of losing important information. This difference
reinforces the conclusion that KNN with SMOTE is the most reliable solution in this paper.

4. Conclusion

This paper compares KNN and Decision Tree models for detecting stunting in toddlers using three
class imbalance handling strategies: no sampling, SMOTE, and RUS. This paper concludes that
the combination of KNN model with SMOTE oversampling technique represents the most superior
and reliable solution, achieving a nearly perfect F1-Score of 0.99. This success is also attributed
to the highly compatible combination between KNN's working mechanism and SMOTE's results.
KNN heavily relies on nearest neighbor data and SMOTE excels at making minority data groups
denser and more recognizable.

The success of the KNN and SMOTE combination demonstrates that a sampling technique's
effectiveness is highly dependent on the model's working mechanism. In this case, successful
stunting detection occurred because KNN's working method is highly compatible with how
SMOTE creates synthetic data that makes minority class patterns denser and clearer. SMOTE
makes KNN's task significantly easier, resulting in highly accurate outcomes. Furthermore, this
paper confirms that F1-Score is a far superior and more reliable evaluation metric compared to
accuracy for problems with critical class imbalance, where identifying every minority case is the
primary priority.

Nevertheless, this research has limitations, including the use of data from one geographical region
and testing limited to two algorithms. Future research can be expanded by testing this interaction
on other more complex algorithms (such as XGBoost or deep learning) on more diverse datasets
to ensure model generalization. Overall, this paper offers both a reliable, practical approach for
detecting stunting early and significant methodological guidance for using machine learning to
address pressing public health issues involving imbalanced data.
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