PERAMALAN DURASI ETHEREUM MENGGUNAKAN MODEL AUTOREGRESSSIVE CONDITIONAL DURATION

Renova Jojor Delima Simanullang¹, I Wayan Sumarjaya^{§2}, Ratna Sari Widiastuti ³

¹Program Studi Matematika, FMIPA, Universitas Udayana [Email: renovasimanullang@gmail.com]

ABSTRACT

Forecasting is the process of estimating future events using historical data. Financial time series forecasting often prioritizes on stock price variables. Apart from the stock price variables, intertransaction time or duration is also an important variable to predict, because the timing of changes in financial prices cannot be predicted. Duration modeling and forecasting can be done using the autoregressive conditional duration (ACD) model. This research aims to predict the duration of Ethereum in order to help traders know the time needed to reach the next price change. Several ACD models were fit were fit to the Ethereum duration using four distributions, i.e., exponential, Weibull, Burr, and generalized gamma The research results suggest that the Burr-ACD model produces the smallest AIC value compared to other distributed ACD models. However, the forecast results using the Burr-ACD models show increasing duration and hence are less accurate. The generalized gamma-ACD (2,2) model was then chosen as an alternative for forecasting Ethereum duration, showing that Ethereum duration forecast results are less than one second, which indicates the high frequency of transactions that occur on Ethereum.

Keywords: autoregressive conditional duration, Ethereum, forecasting, duration forecasting, intertransaction time forecasting

1. PENDAHULUAN

Ketersediaan data historis finansial telah mengalami perkembangan seiring dengan kemajuan teknologi. Pada awalnya data historis hanya berupa data harga harian, tetapi kini telah berkembang menjadi data berfrekuensi tinggi (high frequency data). Pada data harga harian hanya terdapat satu data harga pembukaan maupun penutupan, sedangkan pada data berfrekuensi tinggi seluruh perubahan harga beserta waktu transaksi akan tercatat dengan lengkap. Selain itu data berfrekuensi tinggi berfluktuasi pada waktu yang tidak beraturan.

Berbagai penelitian mengenai analisis deret waktu finansial biasanya hanya mengutamakan penelitian pada harga saham, misalnya peramalan harga penutupan saham harian. Namun, selain variabel harga saham, variabel lain yang juga perlu dianalisis adalah waktu terjadinya setiap transaksi. Menurut Nakakita dan Nakatsuma (2025) pengetahuan tentang waktu antartransaksi atau durasi memegang

peranan penting dalam memahami jumlah dan atribut peserta pasar. Lebih lanjut Nakakita dan Nakatsuma (2025) mengatakan bahwa pengetahuan durasi ini penting tidak saja bagi *trader*, tetapi juga bagi praktisi bisnis dan otoritas pengawas. Hal ini menunjukkan peramalan durasi memegang peranan penting dalam pasar keuangan.

ISSN: 2303-1751

Berdasarkan pertimbangan-pertimbangan tersebut, Engle dan Russel (1994, 1998) mengusulkan model *autoregressive conditional duration* (ACD) untuk memodelkan waktu antartransaksi atau durasi. Sifat-sifat asimtotik ACD dipelajari lebih lanjut dalam Cavaliere et al. (2025).

Pemodelan terhadap durasi bertujuan untuk memodelkan waktu antartransaksi yang tidak beraturan seperti pada data berfrekuensi tinggi. Peramalan waktu antartransaksi akan membantu para pelaku pasar untuk mengetahui waktu yang diperlukan untuk mencapai perubahan harga

²Program Studi Matematika, FMIPA, Universitas Udayana [Email: sumarjaya@unud.ac.id]

³Program Studi Matematika, FMIPA, Universitas Udayana [Email: ratnasariwidiastuti@unud.ac.id] §Corresponding Author

berikutnya.

Berdasarkan data Otoritas Jasa Keuangan (OJK) jumlah investor kripto di Indonesia sampai dengan Februari 2024 mencapai 19,18 juta investor dan akan terus mengalami peningkatan (Kompas.com, 2024). Salah satu jenis aset kripto yang banyak diminati adalah Ethereum. Ethereum sebagai salah satu aset kripto terbesar di dunia menghadirkan inovasi yang berbeda dengan mata uang kripto lainnya. Salah satu inovasi yang dihadirkan oleh Ethereum adalah kemampuan Ethereum dalam membuat dan menjalankan kontrak pintar (smart Kontrak pintar contract). Ethereum memungkinkan pengembang untuk membuat aplikasi dApps sebuah pada iaringan terdesentralisasi Ethereum seperti aplikasi Foundation untuk jual beli karya seni dan aplikasi Aave untuk pinjam meminjam aset kripto.

Kehadiran inovasi baru kripto pada Ethereum menyebabkan Ethereum semakin diminati oleh investor. Investor yang ingin berinvestasi pada aset investasi seperti Ethereum perlu memahami pasar Ethereum dengan baik. Lebih lanjut, pemodelan durasi Ethereum akan menggunakan empat distribusi yang berbeda yaitu distribusi eksponensial, Weibull, Burr, dan generalized gamma. Keempat distribusi ini akan dibandingkan untuk mengetahui distribusi mana yang lebih akurat dalam memodelkan durasi Ethereum.

2. METODE PENELITIAN

Model ACD diusulkan oleh Engle dan Russel (1994) bertujuan untuk memodelkan durasi atau interval waktu antarkejadian yang tidak beraturan. Misalkan t_i adalah waktu untuk kejadian ke-i dan t_{i-1} merupakan waktu sebelum kejadian ke-i. Apabila x_i merupakan interval waktu antara dua kejadian berurutan pada waktu t_i dan t_{i-1} , maka x_i dapat dituliskan sebagai

$$x_i = t_i - t_{i-1}.$$

Karena x_i merupakan waktu tunggu kejadian berikutnya, $\{x_i\}$ adalah suatu variabel acak yang positif. Umumnya pada data finansial akan terdapat suatu pola harian (diurnal pattern), yaitu pola durasi pada waktu tertentu akan mempunyai durasi yang pendek jika dibandingkan dengan waktu yang lain (Engle & Russell, 1998). Pola harian ini biasanya terjadi pada waktu pembukaan dan penutupan aktivitas trading yang ditandai oleh durasi yang pendek

dikarenakan tingginya aktivitas *trading*. Pada waktu tengah hari (*lunchtime*) durasi akan berlangsung lama karena sedikitnya aktivitas *trading*.

Pola harian dari suatu data durasi perlu dipisahkan. Pemisahan pola harian dari suatu data durasi dilakukan melalui penyelarasan data durasi (adjusted duration). Menurut Moravova (2008), data durasi akan dibagi menjadi komponen deterministik dan stokastik. Data durasi yang berpola harian akan menjadi komponen deterministik dan data durasi yang bukan berpola harian akan menjadi komponen stokastik. Komponen deterministik pada data durasi harian diestimasi dengan menggunakan metode Friedman super smoother. Friedman super smoother merupakan estimator regresi nonparametrik yang didasarkan pada regresi linear lokal dengan bandwith adaptif (Luedicke, 2015). Tujuan dari metode Friedman super smoother adalah meratakan dan menghilangkan fluktuasi acak atau noise yang terdapat pada dataset (Nurjanah & Sutawanir Darwis, 2024). Dengan demikian, data yang telah diselaraskan akan digunakan sebagai data untuk mengestimasi model ACD.

Model ACD mengasumsikan bahwa ketergantungan waktu antara durasi ke-i dan durasi sebelumnya i-1 ditentukan oleh ψ_i . Misalkan x_i menyatakan durasi; i=1,2,...,T dengan T banyaknya durasi, maka $\psi_i=\mathrm{E}(x_i|F_{(i-1)})$ dengan F_{i-1} adalah kumpulan informasi durasi yang terdapat pada t_{i-1} . Dapat dikatakan bahwa ψ_i merupakan durasi yang diharapkan pada F_{i-1} (Tsay, 2006). Engle & Russell (1998) mendefinisikan model ACD(m,q) sebagai berikut:

$$x_i = \psi_i \varepsilon_i, \tag{1}$$

$$\psi_i = \omega + \sum_{j=1}^m \alpha_j x_{i-j} + \sum_{j=1}^q \beta_j \psi_{i-j},$$
 (2)

dengan ε_i merupakan barisan peubah acak yang berdistribusi identik dan saling bebas. Persamaan (2) menunjukkan suatu ekspektasi dari durasi ke-i serta m dan q mengacu pada lag, dengan $\theta = (\omega, \alpha_1, \dots, \alpha_m, \beta_1, \dots, \beta_q), \omega > 0$, $\alpha_j, \beta_j \geq 0$, dan $j = 1, \dots, m, q$. Spesifikasi yang berbeda dari ψ_i dan distribusi ε_i pada persamaan (1) akan menghasilkan model ACD yang berbeda. Model ACD menggunakan distribusi probabilitas yang didefinisikan pada himpunan bilangan real positif (Huptas, 2014). Engle & Russell (1994) menggunakan distribusi probabilitas eksponensial standar dan Weibull

untuk memodelkan durasi pada model ACD. Studi lainnya menggunakan distribusi Burr (Grammig & Maurer, 2000) dan distribusi *generalized gamma* (Lunde, 1999) dalam memodelkan durasi pada model ACD.

Tahapan pemodelan dan peramalan durasi Ethereum menggunakan model ACD diuraikan sebagai berikut.

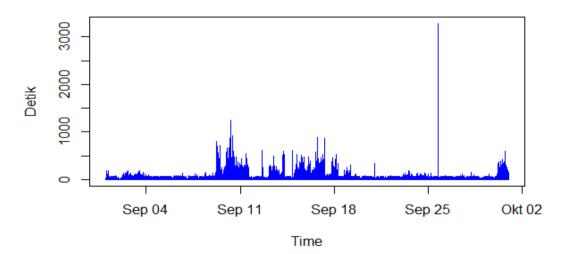
- 1. Persiapan data durasi
 Langkah pertama dalam analisis
 pemodelan ACD adalah menghitung
 durasi atau interval waktu antara dua
 kejadian.
- 2. Penyelarasan data durasi
 Menyelaraskan data durasi
 menggunakan metode Friedman *super smoother* untuk menghilangkan pola
 harian pada data durasi. Data durasi
 yang telah diselaraskan akan digunakan
 sebagai data untuk menganalisis model
 ACD.
- 3. Estimasi parameter model ACD
 Parameter dari masing-masing model
 ACD dari distribusi eksponensial
 (EACD), Weibull (WACD), Burr
 (BACD), dan generalized gamma
 (GACD) akan diestimasi menggunakan
 metode maximum likelihood estimation
 (MLE).
- 4. Pemilihan model ACD terbaik

- Model terbaik dari masing-masing model EACD, WACD, BACD, dan GACD dipilih menggunakan *Akaike's information criterion* (AIC). Model ACD terbaik ditentukan oleh nilai AIC terkecil di antara semua model ACD.
- 5. Uji Kelayakan Model ACD
 Pada model ACD diharapkan residual
 yang diperoleh memenuhi asumsi white
 noise yaitu residual independen dan
 identik (Engle & Russell, 1998).
 Pengujian residual white noise model
 ACD dapat dilakukan dengan uji LjungBox.
- 6. Peramalan durasi
 Melakukan peramalan durasi Ethereum
 menggunakan model ACD terbaik.

3. HASIL DAN PEMBAHASAN

Data yang digunakan pada penelitian ini merupakan data *tick-by-tick* Ethereum selama periode bulan September 2023 yang bersumber dari *software Tickstory*. Perangkat lunak yang digunakan dalam penelitian in adalah R. Pustaka yang digunakan adalah ACDm yang dibuat oleh Belfrage (2024). Data durasi Ethereum berjumlah 518.822. Plot data durasi Ethereum dapat dilihat pada Gambar 1.

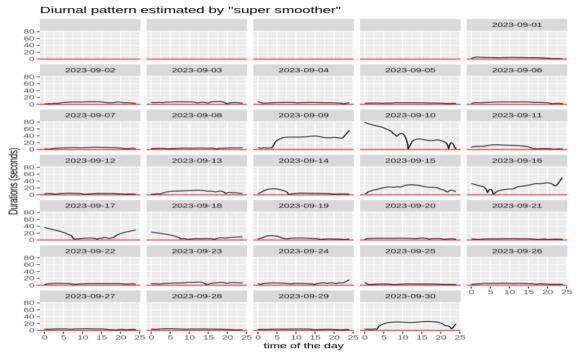
Plot Durasi Ethereum



Gambar 1. Plot Durasi Ethereum Periode Bulan September 2023

Menurut Engle & Russell (1998) pola harian pada data durasi ditunjukkan oleh durasi yang singkat selama waktu pembukaan dan penutupan pasar modal dan durasi yang panjang selama waktu makan siang (lunchtime). Pada waktu pembukaan pelaku pasar akan sangat aktif dalam bertransaksi untuk mendapatkan keuntungan dari berita yang terakumulasi dalam semalam yang mengakibatkan aktivitas

perdagangan sangat tinggi (Brauneis et al., 2023; Pacurar, 2008). Demikian pula pada waktu penutupan pasar modal, pelaku pasar akan menutup posisi (*close position*) sebelum pasar modal berakhir. Pada waktu makan siang frekuensi transaksi mengalami penurunan yang menyebabkan durasi yang lebih panjang.



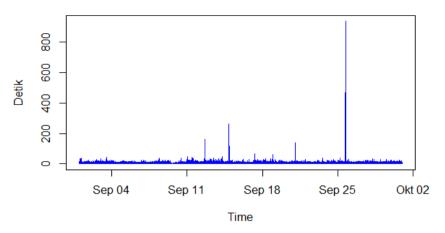
Gambar 1. Estimasi pola harian data durasi Ethereum menggunakan metode Friedman *super smoother*

Gambar 2 memperlihatkan grafik estimasi pola harian pada data durasi Ethereum. Pola harian data durasi Ethereum terjadi sekitar waktu makan siang (*lunchtime*) pada tanggal 15 September 2023 sekitar pukul 10.00 sampai pukul 15.00. Durasi Ethereum menunjukkan durasi yang panjang pada waktu siang hari yang menunjukkan aktivitas saham yang kurang aktif yang ditandai oleh bentuk "parabola terbuka ke bawah". Pada tanggal 17 dan 18 September 2023, durasi Ethereum yang singkat terlihat

sekitar pukul 10.00 sampai 15.00. Hal ini menunjukkan aktivitas saham yang aktif pada waktu siang hari yang ditandai oleh pola "parabola terbuka ke atas" pada grafik.

Pola harian pada data durasi dapat diatasi dengan melakukan penyelarasan data durasi (adjusted duration). Penyelarasan data durasi dilakukan menggunakan metode Friedman super smoother. Plot durasi Ethereum yang diselaraskan dapat dilihat pada Gambar 3.

Plot Durasi Ethereum yang Diselaraskan



Gambar 2. Plot durasi Ethereum yang diselaraskan

Penyelarasan durasi Ethereum bertujuan untuk menghilangkan pola harian. Perbedaan plot antara durasi Ethereum sebelum diselaraskan (Gambar 1) dan plot durasi Ethereum yang telah diselaraskan (Gambar 3), terlihat pada tanggal 11 sampai dengan 18 September 2023 yang ditandai dengan garis biru pada plot. Seperti yang dapat dilihat pada Gambar 3 pada tanggal 11 sampai dengan 18 September 2023, durasi yang panjang atau garis biru pada plot telah diratakan. Hal ini menunjukkan pola harian pada data durasi Ethereum telah diselaraskan.

Tahap selanjutnya adalah mengestimasi

parameter-parameter dengan metode *maximum likelihood estimation* dari setiap model ACD yang berdistribusi eksponensial, Weibull, Burr, dan *generalized gamma*. Pada estimasi model ACD(*m*, *q*), pemilihan orde *m* dan *q* mengacu pada *lag* (Engle & Russell, 1998). Pada penelitian ini, orde *m* dan *q* dibatasi hanya pada orde satu dan dua saja. Dengan demikian, masing-masing distribusi model ACD akan memiliki empat spesifikasi model ACD akan memiliki empat spesifikasi model ACD(*m*, *q*) yang berbeda yaitu: ACD(1,1), ACD(1,2), ACD(2,1), dan ACD(2,2). Estimasi parameter model ACD dapat dilihat pada Tabel 1.

Tabel 1. Estimasi Parameter Model ACD

	$\widehat{\omega}$	\hat{lpha}_1	\hat{eta}_1	$\hat{\alpha}_2$	\hat{eta}_2	Ŷ	ĥ	$\hat{\sigma}^2$	AIC
EACD(1,1)	0,0256	0,0704	0,9072	-	-	-	-	-	1.046.468,93
WACD(1,1)	0,0826	0,1260	0,7879	-	-	0,9036	-	-	1.039.905
BACD(1,1)	0,810	0,138	0,822	-	-	-	3,147	3,003	848.875,7
GACD(1,1)	0,0542	0,0427	0,8966	-	-	0,0205	2269,9272	-	891.073,5
EACD(1,2)	0,0252	0,0691	0,9303	-	-0,0216	-	1	-	1.046.468
WACD(1,2)	0,0260	0,0685	0,9452	-	-0,0378	0,9018	ı	-	1.033.701
BACD(1,2)	0,649	0,108	1,245	-	-0,391	-	3,144	2,955	848.331
GACD(1,2)	0,0555	0,0421	1,1355	-	-0,2393	0,0330	873,0526	-	891.641
EACD(2,1)	0,02635	0,06692	0,90522	0,00475	-	-	-	-	1.046.460
WACD(2,1)	0,02803	0,06461	0,90095	0,00841	-	0,90177	-	-	1.033.683
BACD(2,1)	2,132268	-0,000404	0,531273	0,325713	-	-	3,157423	3,009577	846.568,7
GACD(2,1)	0,0868	0,0212	0,8403	0,0423	-	0,0323	910,8163	-	890.898
EACD(2,2)	0,0493	0,0559	0,1448	0,0752	0,6810	-	-	-	1.045.875,6
WACD(2,2)	0,0513	0,0546	0,1565	0,0768	0,6645	0,9020	-	-	1.033.148
BACD(2,2)	2,01141	-0,00133	0,13271	0,35319	0,38885	-	3,14798	2,99099	845.613,8
GACD(2,2)	0,1392	0,0253	0,0544	0,0758	0,6900	0,0203	2307,9812	-	888.994,6

Sumber: data diolah (2024)

Model ACD terbaik dipilih berdasarkan nilai AIC terkecil dan signifikan pada taraf 5%. Berdasarkan Tabel 1 model ACD yang berdistribusi Burr (BACD) memiliki nilai AIC yang lebih kecil dibandingkan dengan model

ACD yang berdistribusi eksponensial (EACD), Weibull (WACD), dan *generalized gamma* (GACD). Berikut ini diuraikan sepuluh model ACD terbaik.

Tabel 2. Model ACD Terbaik

Model	AIC	p – value	Keputusan
BACD(2,2)	845.613,80129	$2.2 \times 10^{-16} \approx 0$	Tolak H ₀
BACD(2,1)	846.568,7100	$2.2 \times 10^{-16} \approx 0$	Tolak H ₀
BACD(1,2)	848.331,00319	$2,2 \times 10^{-16} \approx 0$	Tolak <i>H</i> ₀
BACD(1,1)	848.875,6961	$2,2 \times 10^{-16} \approx 0$	Tolak H ₀
GACD(2,2)	888.994,6	$2.2 \times 10^{-16} \approx 0$	Tolak <i>H</i> ₀
GACD(2,1)	890.898	$2,2\times10^{-16}\approx0$	Tolak <i>H</i> ₀
GACD(1,1)	890.898	$2.2 \times 10^{-16} \approx 0$	Tolak H_0
GACD(1,2)	891.641	$2,2\times10^{-16}\approx0$	Tolak H_0
WACD(2,2)	1.033.148	$1,543 \times 10^{-8} \approx 0$	Tolak <i>H</i> ₀
WACD(2,1)	1.033.683	$3,227 \times 10^{-11} \approx 0$	Tolak <i>H</i> ₀

Sumber: data diolah (2024)

Tabel 2 memperlihatkan beberapa kandidat model ACD beserta nilai AIC yang bersesuaian dan p-value yang berhubungan dengan uji hipotesis tentang autokorelasi pada sisaan. Hipotesis nol dalam uji tersebut mengatakan bahwa tidak terdapat autokorelasi pada sisaan. Lebih lanjut berdasarkan Tabel 2 model BACD(2,2) merupakan model ACD terbaik memodelkan durasi Ethereum dalam berdasarkan kriteria nilai AIC terkecil dibandingkan dengan model-model lainnya. Kemudian dapat dilihat bahwa seluruh model ACD terbaik memiliki p - value yang lebih kecil dari taraf signifikansi 5% atau $\alpha = 0.05$. Artinya, pada tingkat signifikan $\alpha = 5\%$, hipotesis nol ditolak yang berarti terdapat autokorelasi pada residual model ACD. Dengan demikian, dapat disimpulkan bahwa sepuluh model ACD terbaik belum memenuhi asumsi model ACD yaitu asumsi independensi residual.

Model ACD terbaik berdasarkan Tabel 2 adalah model BACD(2,2). Model BACD(2,2) dapat dituliskan sebagai berikut:

$$\begin{aligned} x_i &= \psi_i \varepsilon_i, \\ \psi_i &= 2,01141 - 0,00133 x_{i-1} + 0,13271 \psi_{i-1} \\ &+ 0,35319 x_{i-2} \\ &+ 0,38885 \ \psi_{i-2} \end{aligned}$$

dengan $\{\varepsilon_i\}$ yang berdistribusi Burr dan parameter $\kappa=3,14798$ dan $\sigma^2=2,99099$. Langkah selanjutnya adalah memprediksi durasi pada Ethereum menggunakan model BACD(2,2). Durasi Ethereum dilambangkan dengan x_i dengan $i=1,2,\ldots,T$ dan T adalah banyaknya durasi. Tabel 3 berikut berisikan hasil peramalan durasi Ethereum menggunakan model BACD(2,2).

Tabel Error! No text of specified style in document.. Peramalan Durasi Ethereum dengan Model BACD(2.2)

x_i	Durasi	x_i	Durasi	x_i	Durasi
x_1	5,81826923974494	x_8	8,90685975508699	<i>x</i> ₁₅	11,8950763738162
x_2	4,51111392590814	x_9	9,81475026954844	<i>x</i> ₁₆	12,0903542906246
x_3	6,92146831460166	<i>x</i> ₁₀	9,91011890461873	<i>x</i> ₁₇	12,426464646033
x_4	6,26817944251007	<i>x</i> ₁₁	10,5963396033276	<i>x</i> ₁₈	12,6155269221987
x_5	7,97092980827402	<i>x</i> ₁₂	10,7572627435152	<i>x</i> ₁₉	12,8897733112942
x_6	7,70987090882041	<i>x</i> ₁₃	11,2876081159242	<i>x</i> ₂₀	13,0660956347049
x_7	8,93908196722101	<i>x</i> ₁₄	11,4766963999383	<i>x</i> ₂₁	13,29276270406

Sumber: data diolah (2024)

Berdasarkan Tabel 3 ramalan durasi

Ethereum menggunakan model BACD(2,2) menunjukkan durasi yang semakin meningkat.

Hal ini mengindikasikan hasil ramalan durasi model BACD(2,2) dapat disimpulkan kurang akurat. Ketidakakuratan ini dapat disebabkan oleh model yang belum mampu mengestimasi dan memodelkan data dengan baik dan tidak memenuhi asumsi *white noise*. Dengan demikian, model BACD(2,2) tidak direkomendasikan untuk digunakan sebagai

Oleh karena itu, peramalan durasi Ethereum dilakukan dengan model terbaik kedua yaitu model BACD(2,1). Namun, seperti halnya dengan hasil peramalan durasi menggunakan model BACD(2,2) ramalan durasi yang juga mengalami peningkatan. Demikian pula ramalan yang semakin meningkat juga terjadi apabila durasi Ethereum dimodelkan dengan model ACD terbaik ketiga dan keempat yaitu model

model peramalan durasi Ethereum.

BACD(1,2) dan model BACD(1,1). Jadi, dapat disimpulkan bahwa model BACD juga tidak layak digunakan untuk meramalkan durasi Ethereum.

ISSN: 2303-1751

Langkah berikutnya adalah meramalkan dengan model alternatif yaitu GACD. Model GACD(2,2) merupakan model terbaik kelima pada Tabel 2. Model GACD(2,2) dapat dituliskan sebagai berikut:

$$x_{i} = \psi_{i} \varepsilon_{i}$$

$$\psi_{i} = 0.1392 + 0.0253 x_{i-1} + 0.0544 \psi_{i-1} + 0.0758 x_{i-2} + 0.6900 \psi_{i-2}$$
denote (s) veng berdigtribusi generalizar

dengan $\{\varepsilon_i\}$ yang berdistribusi *generalized* gamma dan parameter $\kappa = 2307,9812$ dan $\gamma = 0,0203$. Berikut hasil peramalan durasi Ethereum menggunakan model GACD(2,2).

	1 aoci 5. i ciamaian Barasi i	sincream dengan ivi	0401 0110 (2,2)
x_i	Durasi	x_i	Durasi
x_1	1,06484035454309	<i>x</i> ₁₅	0,920995176272298
x_2	0,820945223715911	<i>x</i> ₁₆	0,900489689744996
<i>x</i> ₃	1,02004168803944	x ₁₇	0,916221770611093
x_4	0,849126339802762	x ₁₈	0,901771859191757
x_5	0,987979797442442	<i>x</i> ₁₉	0,912668458699916
x_6	0,868153561523456	x ₂₀	0,902470722805893
<i>x</i> ₇	0,964942539604293	x ₂₁	0,910003025489581
<i>x</i> ₈	0,880889594962502	x ₂₂	0,902793612733435
x_9	0,948315193318213	x ₂₃	0,907987576947673
<i>x</i> ₁₀	0,889318421006069	x ₂₄	0,902880354593745
<i>x</i> ₁₁	0,936253445794311	x ₂₅	0,906451072569455
<i>x</i> ₁₂	0,894812461094188	x ₂₆	0,902824402774311
<i>x</i> ₁₃	0,927454247478335	x ₂₇	0,9052699743748
x ₁₄	0,89831891971949	x ₂₈	0,902687484407546

Tabel 3. Peramalan Durasi Ethereum dengan Model GACD(2,2)

Sumber: data diolah (2024)

Hasil ramalan durasi Ethereum pada Tabel 4 menggunakan model GACD(2,2) menunjukkan bahwa durasi Ethereum rata-rata terjadi kurang dari satu detik. Waktu antartransaksi pada Ethereum yang singkat menunjukkan bahwa aktivitas perdagangan Ethereum terjadi sangat cepat. Durasi yang singkat pada hasil ramalan durasi menunjukkan frekuensi transaksi yang tinggi pada Ethereum.

Banyaknya aktivitas perdagangan yang terjadi membuktikan besarnya minat dan potensi keuntungan investasi Ethereum bagi para pelaku pasar. Ramalan durasi yang singkat pada Ethereum merujuk pada aktivitas perdagangan Ethereum yang tinggi. Hal ini akan memberikan keuntungan pelaku pasar yang sedang berinvestasi maupun yang akan berinvestasi pada Ethereum. Aktivitas perdagangan yang aktif pada Ethereum akan mampu mendorong kenaikan harga Ethereum, sehingga Ethereum layak dijadikan sebagai aset investasi jangka panjang.

4. KESIMPULAN DAN SARAN

Berdasarkan penelitian yang telah dilakukan dapat disimpulkan bahwa model *autoregressive* conditional duration (ACD) dengan distribusi Burr (Burr autoregressive conditional duration,

disingkat BACD) memberikan nilai AIC terkecil yang menunjukkan bahwa model ini paling sesuai untuk memodelkan durasi Ethereum. Namun, hasil ramalan menggunakan seluruh model BACD menunjukkan ramalan durasi yang semakin meningkat, sehingga model BACD tidak direkomendasikan digunakan untuk meramalkan durasi Ethereum karena kurang akurat. Dengan demikian, peramalan durasi Ethereum dilakukan dengan menggunakan generalized model gamma autoregressive conditional duration (GACD), yaitu GACD(2,2). Hasil peramalan durasi Ethereum menunjukkan bahwa durasi Ethereum terjadi kurang dari satu detik. Hal ini mengindikasikan tingginya frekuensi transaksi pada Ethereum.

Penelitian selanjutnya disarankan untuk melakukan evaluasi maupun pengembangan untuk meningkatkan akurasi ramalan durasi Ethereum menggunakan model BACD, sebab hasil ramalan durasi Ethereum menggunakan seluruh model BACD menunjukkan hasil ramalan yang tidak akurat. Selain itu, pada penelitian ini model ACD yang digunakan hanya berdistribusi eksponensial, Weibull, Burr, dan generalized gamma. Oleh sebab itu, model ACD dengan distribusi lainnya seperti distribusi generalized F dan distribusi q-Weibull berpotensi meningkatkan keakuratan peramalan durasi. Selain itu, model alternatif seperti Box-Cox ACD, additive and multiplicative ACD, dan augmented Box-Cox ACD dapat digunakan untuk memodelkan dan meramalkan durasi Ethereum.

DAFTAR PUSTAKA

- Belfrage M. (2024). ACDm: Tools for Autoregressive Conditional Duration Models. R package version 1.0.4.3, https://CRAN.Rproject.org/package=ACDm
- Brauneis, A., Mestel, R., & Theissen, E. (2023).
 The Crypto World Trades at Tea Time.
 Intraday Evidence from Centralized
 Exchanges across the Globe. SSRN
 Electronic Journal.
 https://doi.org/10.2139/ssrn.4347853
- Cavaliere, G., Mikosch, T., Rahbek, A. and Vilandt, F. (2025), A Comment on: Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data. *Econometrica*, 93: 719-

- 729. https://doi.org/10.3982/ECTA21896
- Engle, R. F., & Russell, J. R. (1994). Forecasting Transaction Rates: The Autoregressive Conditional Duration Model. *NBER Working Paper 4966*, National Bureau of Economic Research, Inc
- Engle, R. F., & Russell, J. R. (1998). Autoregressive Conditional Duration: A New Model For Irregularly Spaced Transaction Data. *Econometrica*, 66(5), pp.1127-1162. https://doi.org/https://doi.org/10.2307/29996
- Gramming, J. & Maurer, K-O. (2000). Non-monotonic Hazard Functions and the Autoregressive Conditional Duration Model. *The Econometrics Journal*, 3(1), pp.16-38. https://doi.org/10.1111/1368-423x.00037
- Huptas, R. (2014). Bayesian Estimation and Prediction for ACD Models in the Analysis of Trade Durations from the Polish Stock Market. *Central European Journal of Economic Modelling and Econometrics*, 6, pp.237-273. https://doi.org/10.24425/CEJEME.2014.119 242
- Luedicke, J. (2015). Supsmooth: Stata Module to Perform Friedman's Super Smoother. Statistical Software Components S458030, Boston College Department of Economics
- Kompas.com, 5 April 2024, Jumlah Investor Terus Bertambah, Potensi Indonesia Jadi "Crypto Hub" Semakin Besar, Kompas, https://money.kompas.com/read/2024/04/05/110000226/jumlah-investor-terusbertambah-potensi-indonesia-jadi-cryptohub-semakin
- Lunde, A. (1999). A Generalized Gamma Autoregressive Conditional Duration Model. *Discussion paper, Aarlborg University*.
- Moravova, A. (2008). *The ACD Model and the Czech Capital Market*. Diploma Thesis. Charles University. https://dspace.cuni.cz/bitstream/handle/20.5 00.11956/14894/DPTX_0_0_11320_0_2180 06 0 43902.pdf?sequence=1
- Nakakita, M. and Nakatsuma, T. (2025) Analysis of the trading interval duration for the Bitcoin market using high-frequency transaction data. *Quantitative Finance and*

ISSN: 2303-1751

- *Economics*, 9(1): 202-241. https://doi.org/10.3934/QFE.2025007
- Nurjanah, G. M., & Sutawanir Darwis. (2024).
 Prediksi Sisa Usia Pakai Bearing
 Menggunakan Ekstraksi Fitur dan Regresi
 Kuadratik. *Bandung Conference Series:*Statistics, 4(1), 230–240.
 https://doi.org/10.29313/bcss.v4i1.11593
- Pacurar, M. (2008). Autoregressive Conditional Duration Models in Finance: A Survey of The Theoretical and Empirical Literature. *Journal of Economic Surveys*, 22(4), 711–751. https://doi.org/10.1111/j.1467-6419.2007.00547.x
- Tsay, R. (2006). *Analysis of Financial Time Series* (3rd ed). John Willey & Sons Inc.