eISSN: 2656-7784

Maret 2025

EKSTRAKSI DNA DAUN KUMIS KUCING (Orthosiphon stamineus Benth.) KERING

DNA EXTRACTION FROM DRIED "KUMIS KUCING" LEAVES (Orthosiphon stamineus Benth.)

Gusti Ayu Putu Intan Pandini, Made Pharmawati*, Made Ria Defiani

Program Studi Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Udayana, Bali * Email: made pharmawati@unud.ac.id (corresponding author)

INTISARI

Tumbuhan kumis kucing (Orthosiphon stamineus Benth.) merupakan salah satu tumbuhan obat tradisional yang banyak digunakan di Indonesia. Identifikasi morfologi daun kumis kucing kering sebagai obat herbal tidak cukup untuk membuktikan adanya praktik pemalsuan, sehingga diperlukan metode autentifikasi yang lebih spesifik seperti identifikasi genetika molekuler. Namun, sebelum melakukan PCR, diperlukan pemilihan metode ekstraksi DNA dengan kuantitas dan kualitas yang terbaik. Oleh karena itu, penelitian ini bertujuan membandingkan efektivitas metode Doyle & Doyle menggunakan CTAB, metode Dellaporta menggunakan SDS dan metode Rogers & Bendich dalam mengekstraksi DNA daun kumis kucing kering. Informasi mengenai metode ekstraksi DNA terbaik dapat digunakan untuk mengidentifikasi keaslian daun kumis kucing dengan lebih akurat. Metode penelitian dimulai dengan preparasi sampel, ekstraksi DNA, uji kuantitas DNA, elektroforesis dan visualisasi dengan UV *Transilluminator*. Berdasarkan hasil penelitian, metode yang efektif untuk mengekstraksi DNA daun kumis kucing kering adalah metode CTAB (Doyle & Doyle, 1990) yang dimodifikasi karena menghasilkan konsentrasi DNA yang tinggi, yaitu 1508,33 ng/μL dan dengan waktu pengerjaan yang lebih cepat, yaitu selama 16 jam, 20 menit. Hasil visualisasi terlihat pita DNA yang jelas dan tebal, namun DNA yang dihasilkan tidak murni (A260/230: 1,01 dan A260/280: 0,59).

Kata kunci: Doyle, Dellaporta, elektroforesis, Rogers, spektrofotometri,

ABSTRACT

Orthosiphon stamineus Benth. is known as "kumis kucing" is one of the traditional medicinal plants widely used in Indonesia. Morphological identification of dried "kumis kucing" leaves as a herbal remedy is insufficient to prove the existence of counterfeiting practices, thus a more specific authentication method such as molecular genetic identification is required. However, before performing PCR, the selection of DNA extraction method with optimal quantity and quality is necessary. Therefore, this study aims to compare the effectiveness of the Doyle & Doyle method using CTAB, the Dellaporta method using SDS, and the Rogers & Bendich method in extracting DNA from dried "kumis kucing" leaves with the hope of providing information about the best DNA extraction method that can be used to identify the authenticity of "kumis kucing" leaves more accurately. The research method begins with sample preparation, DNA extraction, DNA quantity testing, electrophoresis, and visualization using a UV Transilluminator. Based on this research, the effective method for extracting DNA from dried "kumis kucing" leaves is the modified CTAB method (Doyle & Doyle, 1990), as it yields a high DNA concentration of 1508,33 ng/μL and has a faster processing time, taking 16 hours and 20 minutes. The visualization results show clear and thick DNA bands; however, the resulting DNA is not pure (A260/230: 1,01 and A260/280: 0,59).

Keywords: Doyle, Dellaporta, electrophoresis, Rogers, spectrophotometry

PENDAHULUAN

Kumis kucing (*Orthosiphon stamineus* Benth.) merupakan salah satu tumbuhan obat tradisional yang banyak digunakan di Indonesia. Daun kumis kucing telah digunakan secara empiris untuk mengatasi berbagai penyakit seperti diabetes, hipertensi, batu ginjal, dan infeksi saluran kemih (Widiyastuti, 2015). Ekstrak daun kumis kucing diketahui mengandung senyawa aktif seperti flavonoid, asam fenolat, saponin, dan tanin yang berperan dalam efek farmakologisnya (Jamil *and* Loh, 2012). Namun, peningkatan permintaan daun kumis kucing sebagai obat herbal menyebabkan kerentanan terhadap praktik pemalsuan (*adulteration*) oleh beberapa oknum yang tidak bertanggung jawab. Pemalsuan daun kumis kucing juga dapat terjadi karena keterbatasan pengawasan dari pihak otoritas yang berwenang.

Kumis kucing banyak diperdagangkan dalam bentuk simplisia kering, kapsul, tablet, minuman, dan ekstrak (Hernadi, 2018). Namun, kemungkinan ada pemalsuan bahan baku kumis kucing dengan tumbuhan lain yang memiliki kemiripan morfologi terutama pada bentuk daun yang sangat besar. Beberapa tumbuhan seperti daun babandotan (*Ageratum conyzoides*) dan tekelan (*Eupatorium riparium*) memiliki kemiripan bentuk daun dengan kumis kucing, meskipun berasal dari genus yang berbeda (Breemen *et al.*, 2007). Identifikasi morfologi daun kumis kucing kering sebagai obat herbal tidak cukup untuk membuktikan adanya praktik pemalsuan. Oleh karena itu, diperlukan metode otentifikasi yang lebih spesifik, seperti identifikasi secara molekuler. Metode identifikasi dengan teknik molekuler menggunakan DNA sebagai bahan analisis, sehingga dapat memberikan hasil yang lebih spesifik dan akurat dalam mengidentifikasi keaslian tanaman obat.

Keberhasilan ekstraksi DNA adalah langkah penting dalam analisis DNA lebih lanjut, karena kualitas DNA yang dihasilkan akan mempengaruhi hasil analisis selanjutnya (Vural and Dageri, 2009; Sairhar et al., 2013). Beberapa metode ekstraksi DNA yang umum digunakan, antara lain metode CTAB (Doyle & Doyle, 1990), metode SDS (Dellaporta et al., 1983), dan metode CTAB (Rogers & Bendich, 1985). Ekstraksi DNA metode CTAB (Doyle & Doyle, 1990) merupakan metode yang sangat umum digunakan dalam ekstraksi DNA tanaman. Metode ini menggunakan CTAB dalam buffer lisisnya, sedangkan metode ekstraksi DNA Dellaporta et al. (1983) menggunakan SDS sebagai detergen dalam buffer lisis. Secara umum, metode ekstraksi digunakan untuk mengisolasi DNA dari jaringan tanaman yang memiliki kandungan polisakarida dan metabolit sekunder yang tinggi (Tai and Tanksley, 1990). Metode-metode ini sebagian besar menggunakan larutan ekstraksi berbasis deterjen yang mengandung Cetyl Trimethyl Ammonium Bromide (CTAB), Sodium Dodecyl Sulfate (SDS), dan guanidin (Lin and Kuo, 1998).

Metode CTAB merupakan metode yang paling umum dilakukan dalam ekstraksi DNA genom tanaman yang banyak mengandung senyawa polifenol (Ardiana, 2009). Metode ini juga telah digunakan dalam beberapa penelitian sebelumnya, seperti penelitian oleh Hutami *et al.* (2017) dalam mengidentifikasi keaslian tumbuhan obat jahe. Metode Dellaporta *et al.*, (1983) menggunakan buffer lisis SDS, yang merupakan larutan detergen anion kuat berfungsi melarutkan lipid yang merupakan penyusun membran sel, sehingga DNA akan terekspos keluar sel (Syafaruddin dan Santoso, 2011). Metode ekstraksi DNA Roger & Bendich (1985) juga menggunakan buffer lisis CTAB dan mengoptimalkan purifikasi dengan penambahan buffer TE

dan penambahan dua kali volume etanol. Ketiga metode ekstraksi tersebut dimodifikasi dengan perlakuan inkubasi suhu dingin (-20°C) selama 14 jam untuk memaksimalkan presipitasi DNA.

Belum ada penelitian yang membandingkan efektivitas ketiga metode tersebut untuk mengekstraksi DNA dari daun kumis kucing kering. Oleh karena itu, penelitian ini bertujuan untuk membandingkan efektivitas ketiga metode tersebut dalam mengekstraksi DNA daun kumis kucing kering. Penelitian ini diharapkan dapat memberikan informasi mengenai metode ekstraksi DNA terbaik dari daun kering berdasarkan ketiga metode ekstraksi yang digunakan, sehingga dapat membantu penelitian lebih lanjut dalam mengidentifikasi keaslian daun kumis kucing kering dengan lebih akurat.

MATERI DAN METODE

Waktu dan Tempat Penelitian

Ekstraksi DNA, elektroforesis, uji kualitas DNA dilakukan di Laboratorium Genetika, Program Studi Biologi, FMIPA, Universitas Udayana, sedangkan pengukuran kuantitas DNA dilakukan di UPT Laboratorium Analitik, Universitas Udayana dan di Laboratorium Bionesia, Denpasar, Bali pada bulan Mei-Agustus 2023.

Populasi dan Sampel Penelitian

Populasi dalam penelitian adalah satu kemasan daun kumis kucing kering merk AA EMPON EMPON, dengan berat 100 g, yang dibeli di Toko AA EMPON, Jl. Gunung Cemara VII, No. 316, Tegal Harum, Kecamatan Denpasar Barat, Kota Denpasar, Bali. Sampel yang digunakan adalah 0,05 g daun kumis kucing kering.

Tahapan Penelitian

- 1. Ekstraksi DNA
- a) Preparasi sampel

Sampel daun *Orthosiphon stamineus* kering diblender hingga menjadi serbuk. Serbuk ini kemudian disaring dengan menggunakan alat penyaring 65 *mesh* untuk mendapatkan serbuk yang sangat halus.

b) Ekstraksi DNA metode CTAB (Doyle & Doyle, 1990) yang dimodifikasi

Ekstraksi DNA dilakukan seperti penelitian Nurkamila dan Pharmawati (2014). Modifikasi pada penelitian ini, yaitu perlakuan inkubasi pada suhu -20°C selama 14 jam setelah penambahan isopropanol dingin.

c) Ekstraksi DNA metode SDS (Dellaporta et al., 1983) yang dimodifikasi

Ekstraksi DNA dilakukan seperti penelitian Nurkamila dan Pharmawati (2014). Modifikasi pada penelitian ini, yaitu perlakuan inkubasi pada suhu -20°C selama 14 jam setelah penambahan Na asetat (lalu divortex) dan setelah penambahan isopropanol dingin.

d) Ekstraksi DNA metode CTAB (Rogers & Bendich, 1985) yang dimodifikasi Ekstraksi DNA dilakukan seperti penelitian Nurkamila dan Pharmawati (2014). Modifikasi

eISSN: 2656-7784

Maret 2025

Program Studi Biologi FMIPA UNUD

pada penelitian ini, yaitu perlakuan inkubasi pada suhu -20°C selama 14 jam setelah penambahan dua kali volume etanol.

2. Uji Kuantitas DNA

a) Fluorometer Oubit

Larutan working solution dan sampel DNA dicampurkan hingga total volume 200 µL (volume sampel DNA 1 μL, working solution 199 μL). Campuran tersebut divortex selama 2-3 detik agar tidak terbentuk gelembung, selanjutnya diinkubasi selama 2 menit pada suhu ruang. Kemudian dibaca menggunakan Qubit yang sudah dinyalakan ke program yang sesuai dengan reagen yang digunakan. Tabung standar 1 dimasukkan ke dalam fluorometer Qubit dan dilakukan pembacaan selama 3 detik. Kemudian, standar 1 dipindahkan dan standar 2 dimasukkan dan dilakukan pembacaan. Setelah larutan standar, dimasukkan tabung sampel ke dalam fluorometer Qubit dan dilakukan pembacaan.

b) Spektrofotometer UV-Vis

Sebanyak 20 µL dari tiap sampel DNA diencerkan ke dalam tabung flakon yang berisi 1980 μL aquadest (pengenceran 100 kali). Tabung flakon yang berisi sampel DNA yang telah diencerkan divorteks agar homogen.. Sebagai blanko, aquadest sebanyak 2 mL dimasukkan ke dalam kuvet I, sedangkan 2 mL tiap sampel DNA dimasukkan ke dalam kuvet II. Absorbansi diukur pada panjang gelombang 230 nm, 260 nm dan 280 nm. Pada spektrofotometer, akan muncul nilai absorbansi tiap sampel DNA pada masing-masing panjang gelombang. Standar kemurnian DNA berada pada rentang 1,8-2,0. Untuk nilai konsentrasi DNA dihitung dengan rumus sebagai berikut:

$DNA = A260 \times 50 \times faktor pengenceran$

Keterangan : A26 : Nilai absorbansi pada λ 260 nm

50 : nilai absorbansi 1,0 = 50 μg untai ganda DNA/ mL (Barbosa *et al.*, 2007).

3. Elektroforesis gel

Elektroforesis dilakukan dengan pada 1% gel agarosa dalam buffer 1x TAE (Tris Acetate-EDTA). Sebanyak 5 μL larutan DNA dicampurkan dengan 1 μL loading dye dan dimasukkan ke sumur-sumur gel. Elektroforesis dilakukan dengan tegangan 80 volt selama 50 menit. Gel agarose yang telah melalui proses elektroforesis diwarnai dengan Biotium gel red selama 30 menit. Hasil pewarnaan dilihat dengan sinar ultraviolet dari alat UV transluminator dan didokumentasikan dengan kamera.

HASIL

1. Larutan DNA Hasil Ekstraksi

Berdasarkan hasil penelitian, larutan DNA hasil ekstraksi memiliki warna yang berbeda-beda pada setiap metode. Warna larutan DNA hasil ekstraksi yang didapatkan dari masing-masing metode adalah cokelat (brown), kekuning-kuningan (yellowish), dan tidak berwarna (colorless). Data selengkapnya disajikan pada Tabel 1.

Tabel 1. Warna larutan DNA hasil ekstraksi daun kering *Orthosiphon stamineus*

Metode Ekstraksi DNA	Gambar	Warna	
Metode CTAB (Doyle & Doyle, 1990)	VALUE	cokelat (brown)	
Metode SDS (Dellaporta <i>et al.</i> , 1983)		kekuning-kuningan (yellowish)	
Metode CTAB (Rogers & Bendich, 1985)		tidak berwarna (colorless)	

2. Uji Kuantitas dan Kemurnian DNA

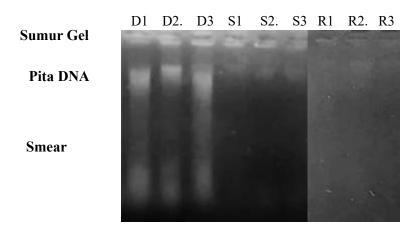
Pada penelitian ini, konsentrasi DNA diuji dengan fluorometer Qubit dan spektrofotometer UV-Vis. Hasil uji konsentrasi DNA dan analisis LSD disajikan pada Tabel 2. Kemurnian DNA hanya dapat diuji dengan spektrofotometer UV-Vis seperti yang ditunjukkan pada Tabel 3.

Tabel 2. Konsentrasi DNA daun kering *Orthosiphos stamineus*

Jenis Metode	Kode Sampe	Konsentrasi (ng/μL)		Rerata ± Std. Deviasi (ng/µL)	
		Qubit	Spektro UV-Vis	Qubit	Spektro UV-Vis
Metode CTAB (Doyle & Doyle, 1990)	D1	2,72	1860		
	D2	3,22	1145	$2,\!83\pm0,\!35^{ab}$	$1508,\!33 \pm 357,\!64^a$
	D3	2,55	1520		
Metode SDS (Dellaporta <i>et al.</i> , 1983)	S1	0,97	575		
	S2	0,65	760	$0,\!74\pm0,\!197^a$	$725 \pm 135,92^{b}$
	S3	0,61	840		
Metode CTAB (Rogers & Bendich, 1985)	R1	3,24	40		
	R2	23,40	285	$13,08 \pm 10,089^{b}$	$166,67 \pm 122,71^{\circ}$
	R3	12,60	175		

Keterangan: abc) Huruf yang sama pada kolom yang sama menunjukkan nilai yang tidak signifikan

Berdasarkan data pada Tabel 2, diperoleh konsentrasi DNA yang beragam dari setiap metode ekstraksi DNA. Hasil pengujian konsentrasi DNA dengan Qubit berada pada kisaran 0,61-23,40 ng/ μ L, sedangkan hasil pengujian konsentrasi DNA dengan spektrofotometer UV-Vis berada pada kisaran 40-1860 ng/ μ L


Nilai kemurnian DNA ditentukan dari absorbansi pada panjang gelombang 230, 260 dan 280. Kisaran nilai absorbansi adalah 0,24-1,11 pada rasio gelombang A260/230 dan 0,36-1,04 pada rasio gelombang A260/280, sesuai data pada Tabel 3 di bawah ini.

Kemurnian Rata-Rata Kemurnian Kode Jenis Metode Sampel A260/230 A260/280 A260/230 A260/280 D1 0,54 1,02 Metode CTAB D2 0,91 0,63 1,01 0,59 (Doyle & Doyle, 1990) D31,11 0,59 **S**1 0.79 0.79 Metode SDS S2 0,84 0.70 0.87 0,62 (Dellaporta et al., 1983) S30,84 0,67 R1 0,24 0,36 Metode CTAB R2 0,55 0,69 1,04 0,43 (Rogers & Bendich, 1985) 0,66 R3 0,51

Tabel 3. Kemurnian DNA daun kering Orthosiphon stamineus

3. Uji kualitas DNA

Hasil ekstraksi DNA diuji kualitasnya menggunakan elektroforesis gel agarosa. Gambar 4 menunjukkan bahwa seluruh ekstraksi DNA menghasilkan pita DNA dengan ketebalan yang beragam pada setiap metode ekstraksi.

Gambar 4. Elektroforesis DNA daun kering *Orthosiphon stamineus* dengan metode Doyle & Doyle, 1990 yang dimodifikasi (D1, D2, D3), metode Dellaporta *et al.*, 1983 yang dimodifikasi (S1, S2, S3), dan metode Rogers & Bendich, 1985 yang dimodifikasi (R1, R2, R3)

4. Waktu Pengerjaan

Ketiga metode ekstraksi DNA memerlukan waktu pengerjaan dan persiapan bahan yang berbeda. Waktu yang diperlukan untuk mengekstraksi DNA mulai dari preparasi sampel sampai terbentuknya larutan DNA pada masing-masing metode disajikan pada Tabel 4.

Tabel 4. Waktu yang diperlukan untuk ekstraksi DNA

Metode	Doyle & Doyle (1990)	Dellaporta et al. (1983)	Rogers & Bendich (1985)
Waktu	16 jam, 20 menit	30 jam, 20 menit	16 jam, 40 menit

PEMBAHASAN

Proses perusakan sel secara fisik dengan memblender daun kering kumis kucing dapat mempermudah buffer ekstraksi dalam memecah sel. Berdasarkan hasil penelitian, terdapat perbedaan warna larutan DNA hasil ekstraksi pada setiap metode yang ditunjukkan pada Tabel 1. DNA yang diekstraksi dari daun kumis kucing kering menggunakan metode CTAB (Doyle & Doyle, 1990) yang dimodifikasi menghasilkan larutan DNA yang berwarna cokelat. Warna cokelat pada DNA disebabkan oleh oksidasi fenol. Senyawa polifenol yang teroksidasi, secara kovalen berikatan dengan DNA. Penambahan alkohol mengakibatkan senyawa polifenol ikut terendap bersama DNA, sehingga endapan berwarna cokelat dan larutan menjadi lebih kental (Li *et al.*, 2007).

Hasil ekstraksi DNA yang berwarna cokelat pada metode Doyle & Doyle (1990) juga diperoleh pada ekstraksi daun kering *Plumeria* sp. (Martida & Pharmawati, 2019). β-*mercaptoethanol* bekerja mengurangi proses oksidasi dan menghindari terjadinya warna cokelat pada DNA (Zidani *et al.*, 2005). β-*mercaptoethanol* selain berperan sebagai antioksidan juga berperan dalam mendegradasi protein (Varma *et al.*, 2007). Senyawa tersebut akan membantu mengurai ikatan sulfat pada struktur protein sehingga protein dapat dieliminasi dengan mudah. Keberhasilan penggunaan β *mercaptoethanol* pada proses ekstraksi DNA dilaporkan pada kunyit dan jahe (Syamkumar *et al.*, 2003); suweg, singkong, ubi jalar, dan talas (Sharma *et al.*, 2008), serta pisang (Shankar *et al.*, 2011).

Metode Dellaporta *et al.*, (1983) menghasilkan larutan DNA yang berwarna kekuning-kuningan (*yellowish*). Larutan DNA berwarna kekuningan menunjukkan bahwa DNA yang diperoleh belum cukup bersih. Penambahan konsentrasi β-*mercaptoethanol* sebesar 20 uL/mL pada buffer lisis terbukti mampu meminimalisir warna kecokelatan pada DNA. DNA yang bersih dari kontaminan tidak akan berwarna, sedangkan DNA yang masih mengandung kontaminan akan berwarna kuning sampai kecokelatan (Milligan,1992). DNA yang diekstraksi dengan metode Rogers & Bendich (1985) yang dimodifikasi menghasilkan larutan DNA yang tidak berwarna (*colorless*) atau menghasilkan isolat yang bersih. Hal ini dapat disebabkan oleh penambahan konsentrasi β-*mercaptoethanol* menjadi 20 uL/mL, proses purifikasi yang dioptimalkan dengan CIA yang dilakukan sebanyak dua kali. Menurut Bintang (2010), pelarut CIA tersebut berfungsi

menggumpalkan protein dan akan berada di fase antara setelah proses sentrifugasi, sedangkan DNA berada pada fase air di lapisan atas, dan kloroform di fase bawah. Penambahan kloroform isoamilalkohol akan mengubah pH larutan dari sifat basa (pH 7,5-8,5) menjadi sekitar 5,5-6,0. Buffer yang bersifat asam akan menghindari teroksidasinya senyawa polifenol yang terkandung pada daun kumis kucing.

Pada presipitasi DNA terdapat perbedaan bahan yang digunakan pada ketiga metode ekstraksi. Metode Doyle & Doyle serta Dellaporta menggunakan isopropanol dingin, sedangkan metode Rogers & Bendich menggunakan etanol. Sifat isopropanol dan etanol adalah kurang polar dibandingkan air, akibatnya tidak dapat berikatan kuat dengan DNA. Isopropanol dan ethanol mempresipitasi DNA pada fase air sehingga DNA menggumpal membentuk struktur benangbenang dan bila disentrifugasi akan diperoleh pellet DNA. Isopropanol bersifat kurang polar daripada etanol, sehingga isopropanol lebih efektif dalam mempresipitasi DNA. Garam-garam yang terlibat dalam proses ekstraksi akan terpresipitasi bersama DNA karena kurang larut dalam isopropanol. Oleh sebab itu dilakukan pencucian dengan etanol untuk menghilangkan residu garam. Pencucian dengan etanol dapat meningkatkan kemurnian DNA (Zumbo, 2013).

Metode yang digunakan oleh Doyle & Doyle (1990) serta Rogers & Bendich (1985) menggunakan buffer dengan CTAB (*Cetyltrimethyl Ammonium Bromide*). Deterjen ini memiliki kapabilitas untuk menghilangkan kompleks polisakarida dan lipid dari membran serta dinding sel, kemudian mengendapkan DNA (Moore *et al.*, 2004). Namun, salah satu kelemahannya adalah cenderung mengendap pada suhu 15°C (Mazo *et al.*, 2012). Metode yang digunakan oleh Dellaporta *et al.* (1983) memanfaatkan buffer ekstraksi dengan deterjen SDS (*Sodium Dodecyl Sulfate*). Deterjen ini efektif dalam mendenaturasi protein dari membran dan dinding sel serta mengurangi aktivitas enzim DNAse (Moore *et al.*, 2004).

Modifikasi pada penelitian ini adalah perlakuan inkubasi suhu dingin -20°C selama 14 jam untuk mengoptimalkan proses presipitasi. Menurut Michiels *et al.* (2003), presipitasi selama semalam (*overnight*) akan memberikan hasil konsentrasi DNA yang lebih tinggi. Peningkatan konsentrasi EDTA dari 20 mM menjadi 50 mM pada metode Doyle & Doyle (1990) dan peningkatan konsentrasi EDTA dari 50 mM menjadi 100 mM pada metode Dellaporta *et al.*, (1983) merupakan modifikasi yang dilakukan oleh Nurkamila dan Pharmawati, 2014. Penambahan EDTA pada buffer berfungsi untuk penghambat DNAse. EDTA merupakan pengkelat ion Mg⁺⁺ ion. DNAse memerlukan ion Mg⁺⁺ sebagai aktivator. Adanya EDTA di dalam buffer menghambat enzim yang aktifitasnya tergantung logam (Purwantara, 2001). Inkubasi pada suhu 65°C selama 90 menit mengikuti penelitian yang dilakukan oleh Nurkamila dan Pharmawati (2014). Ekstraksi DNA daun kering memerlukan waktu inkubasi pada suhu tinggi yang lebih lama untuk memaksimalkan keluarnya DNA dari sel serta mendegradasi protein dari dinding sel (Langga *et al.*, 2012).

DNA hasil ekstraksi diukur kuantitasnya dengan Fluorometer Qubit 3.0 (Invitrogen) dan spektrofotometer UV-Vis. Qubit *fluorometric* adalah salah satu metode kuantifikasi DNA yang menggunakan prinsip *fluorescent dye*. Keuntungan penggunaan fluorometer ini adalah mampu mendeteksi konsentrasi yang rendah (Pratiwi dan Widodo, 2020).

Kualitas DNA yang baik ditunjukkan oleh hasil elektroforesis yaitu adanya pita DNA yang jelas, tebal, dan tidak terdapat *smear* DNA (tidak menyebar). Tebal dan tipisnya pendaran DNA yang dihasilkan pada gel elektroforesis dapat menunjukkan konsentrasi DNA total secara semi-kuantitatif (Sambrook & Russell, 1989).

Hasil uji konsentrasi DNA dengan fluorometer Qubit dan spektrofotometer UV-Vis memiliki perbedaan yang cukup jauh. Berdasarkan Tabel 2, nilai konsentrasi DNA terbesar dengan fluorometer Qubit yaitu 13.08 ng/μL yang menggunakan metode CTAB (Rogers & Bendich, 1985), sedangkan nilai konsentrasi DNA terkecil yaitu 0.74 ng/μL yang menggunakan metode SDS (Dellaporta *et al.*, 1983). Secara umum, konsentrasi DNA yang diperoleh pada metode CTAB (Rogers & Bendich, 1985) telah mencukupi untuk digunakan dalam kegiatan PCR. Menurut rekomendasi Kapa Biosystems (2014) konsentrasi DNA template yang dibutuhkan untuk kegiatan PCR berkisar antara 10-100 ng/μL. Konsentrasi DNA dengan kisaran yang kecil pada Qubit dapat disebabkan oleh spesifitas alat tersebut yang terlalu tinggi, hanya mengukur dsDNA saja dan tidak dapat mendeteksi DNA yang terfragmentasi (Bruijns *et al.*, 2022), sedangkan ketidaksesuaian hasil konsentrasi dengan hasil visualisasi DNA dapat dikarenakan larutan kit Qubit (*working solution*) yang terkontaminasi ataupun karena kesalahan kalibrasi (Bruijns *et al.*, 2022). Oleh karena itu, dilakukan pengujian konsentrasi DNA kembali dengan spektrofotometer UV-Vis.

Hasil konsentrasi yang berbeda ditunjukkan oleh spektrofotometer UV-Vis pada Tabel 2. Nilai konsentrasi DNA terbesar, yaitu 1508,33 ng/μL yang menggunakan metode CTAB (Doyle & Doyle, 1990), sedangkan nilai konsentrasi DNA terkecil, yaitu 166,67 ng/μL yang menggunakan metode CTAB (Rogers & Bendich, 1985). Hasil ini sesuai dengan hasil elektroforesis (Gambar 4), dimana DNA genom dengan metode CTAB (Doyle & Doyle, 1990) yang dimodifikasi (D1, D2, D3) terlihat pita DNA paling tebal, yang menunjukkan konsentrasi yang tinggi. Pita DNA yang menyebar menunjukkan adanya fragmentasi DNA, yaitu putusnya ikatan molekul DNA pada saat proses ekstraksi DNA berlangsung. Akibatnya genom DNA terpotong menjadi bagian bagian yang lebih kecil. Ikatan antar molekul tersebut dapat putus karena adanya gerakan fisik yang berlebihan yang dapat terjadi dalam proses pemipetan, sentrifugasi, atau bahkan karena suhu yang terlalu tinggi serta karena aktivitas bahan bahan kimia tertentu (Sahu *et al.*, 2012). Pada gel elektroforesis, hal ini terlihat dengan adanya *smear* DNA. Menurut Mulyani et al., (2011), *smear* tersebut merupakan DNA yang terdegradasi pada proses ekstraksi.

Berdasarkan uji kemurnian, DNA yang dihasilkan tidak murni, yaitu 1,01 pada A260/230 dan 0,59 pada A260/280, sehingga pada elektroforesis terlihat adanya smear. Hasil ekstraksi DNA dikatakan murni apabila rasio absorbansi A260/230 berkisar antara 2-2,2, sedangkan rasio A260/280 berada pada 1,8-2,0 (Sambrook *et al.*, 1989). Sesuai data pada Tabel 3, ketiga metode ekstraksi DNA pada panjang gelombang 260/280 nilai rasio kemurnian DNA yang diperoleh kurang dari 1,8, menunjukkan adanya kontaminasi dari protein dan fenol. Pada panjang gelombang 260/230, ketiga metode ekstraksi DNA menghasilkan nilai rasio kemurnian DNA kurang dari 2,0, sehingga menunjukkan adanya kontaminasi karbohidrat, polisakarida, dan bahan organik lainnya (Sambrook *et al.*, 1989).

Rendahnya kemurnian DNA dapat disebabkan penggunaan kuvet yang tidak jernih sehingga

mempengaruhi absorbansi sinar UV pada spektrofotometer. Kuvet harus terbuat dari bahan yang tidak dapat menyerap radiasi, terutama pada bagian yang dilewatkan sinar UV. Kuvet umumnya terbuat dari kaca yang tembus sinar dan merupakan kuvet yang lebih baik untuk digunakan pada spektrofotometer UV-Vis. Pada penelitian ini, kuvet yang digunakan adalah kuvet plastik. Kuvet dari bahan kaca silikat dapat menyerap sinar ultraviolet (Dewanata dan Mushlih, 2021).

Ekstraksi DNA dengan metode SDS (Dellaporta *et al.*, 1983) yang dimodifikasi menghasilkan konsentrasi DNA sebesar 725 ng/μL. Elektroforesis DNA (S1, S2, S3) menunjukkan hasil pita DNA yang tipis dan terlihat samar seperti tidak ada pita yang terbentuk (Gambar 2). Selain itu tampak adanya smear yang juga samar pada bagian bawah pita DNA. Hal tersebut tidak sesuai dengan hasil konsentrasi DNA yang cukup tinggi. Menurut Mazo *et al.* (2012), DNA berkualitas baik memiliki konsentrasi diatas 100 ng/μL berdasarkan pengukuran dengan spektrofotometer. Ketidaksesuaian hasil elektroforesis dengan uji spektrofotometri dapat disebabkan oleh tingkat spesifisitas spektrofotometer UV-Vis yang tidak terlalu tinggi, pada panjang gelombang 260 nm bukan hanya *double strain* DNA (dsDNA) yang dapat menyerap panjang gelombang 260 nm, namun juga jenis asam nukleat lain seperti *single strain* DNA (ssDNA) dan RNA (Dewanata dan Mushlih, 2021).

Ekstraksi DNA dengan metode CTAB (Rogers & Bendich, 1985) yang dimodifikasi menghasilkan konsentrasi DNA yang terkecil, yaitu 166,67 ng/μL. Hasil elektroforesis (R1, R2, R3) menunjukkan hasil yang tidak konsisten pada ketiga ulangan, yang ditunjukkan dengan adanya pita DNA genom yang nampak tipis pada R1 dan R3, sedangkan pada ulangan kedua (R2) pita DNA genom terlihat jelas, tidak menyebar, dan tidak ditemukan adanya smear. Pada gel juga terlihat adanya sampel DNA yang sedikit tertinggal pada sumur gel saat elektroforesis. Pita DNA yang nampak tipis pada R1 dan R3 menunjukkan konsentrasi yang rendah, sedangkan tertinggalnya DNA pada sumur gel pada saat elektroforesis mengindikasikan DNA yang tidak murni (0,43 pada A260/230 dan 0,69 pada A260/280) dan sampel sangat terkontaminasi polisakarida (Pharmawati, 2009). Pita DNA pada R2 yang jelas dan tidak menyebar menunjukkan bahwa DNA tidak terdegradasi dan dapat digunakan untuk tahap PCR.

Secara keseluruhan, nilai konsentrasi DNA daun kumis kucing kering yang diperoleh tidak jauh berbeda dengan penelitian yang dilakukan Rawat *et al.* (2016) yang menghasilkan konsentrasi DNA daun kering *Melia dubia* dalam rentang 200-1000 ng/μL. Setelah pengujian kuantitas dan kualitas, dilakukan analisis uji lanjutan LSD. Hasil uji dengan menggunakan spektrofotometer UV-Vis menunjukkan bahwa terdapat perbedaan secara signifikan atau berbeda nyata pada semua metode ekstraksi DNA.

Disamping itu, perbandingan efisiensi waktu antar metode ekstraksi juga merupakan hal yang penting dalam menentukan metode ekstraksi DNA yang paling efektif. Waktu yang digunakan untuk mengekstraksi DNA sampai terbentuknya larutan DNA pada setiap metode ekstraksi berbeda-beda. Berdasarkan data pada Tabel 4, metode yang paling efektif dalam mengekstraksi DNA daun kumis kucing kering adalah metode metode CTAB (Doyle & Doyle, 1990), karena metode tersebut memiliki efisiensi waktu serta cara pengerjaan yang cepat dengan total waktu pengerjaan sampai terbentuknya larutan DNA, yaitu 16 jam, 20 menit. Kemudian metode CTAB

(Rogers & Bendich, 1985) dengan lama pengerjaan sekitar 16 jam, 40 menit, sedangkan waktu pengerjaan untuk metode SDS (Dellaporta et al., 1983) relatif lama, yaitu sekitar 30 jam, 20 menit.

Secara keseluruhan, efektivitas metode ekstraksi DNA dapat dilihat dari (1) kejernihan larutan DNA hasil ekstraksi, (2) konsentrasi DNA yang tinggi dan murni (1,8-2), (3) visualisasi DNA menghasilkan pita DNA yang jelas, terang, tidak menyebar dan tanpa smear, serta (4) waktu pengerjaan yang cepat (Sembiring dkk, 2023). Berdasarkan kriteria tersebut, metode ekstraksi DNA yang paling efektif dalam mengekstraksi daun kumis kucing kering, yaitu metode CTAB (Doyle & Doyle, 1990), karena memenuhi tiga kriteria dari beberapa kriteria yang telah disebutkan. Metode CTAB (Doyle & Doyle, 1990) menghasilkan konsentrasi DNA yang tinggi, yaitu 1508,33 ng/μL, visualisasi terlihat pita DNA yang tebal dan jelas, serta waktu pengerjaan dan persiapan bahan yang lebih cepat, yaitu selama 16 jam, 20 menit. Metode CTAB (Rogers & Bendich, 1985) hanya memenuhi satu dari beberapa kriteria tersebut, yaitu menghasilkan larutan DNA yang jernih, sedangkan metode SDS (Dellaporta et al., 1983) tidak memenuhi salah satu dari kriteria yang telah disebutkan.

SIMPULAN

Larutan DNA yang diekstrak menggunakan metode CTAB (Doyle & Doyle, 1990) berwarna cokelat, dengan metode SDS (Dellaporta et al., 1983) berwarna kekuningan dan DNA yang paling jernih dihasilkan oleh metode CTAB (Rogers & Bendich, 1985). Metode CTAB (Doyle & Doyle, 1990) menghasilkan konsentrasi DNA tertinggi, yaitu 1508,33 ng/μL, sedangkan metode CTAB (Rogers & Bendich, 1985) menghasilkan konsentrasi DNA terendah, yaitu 166,67 ng/µL. Ketiga metode tidak menghasilkan DNA murni (< 1.8). Visualisasi DNA terbaik dihasilkan oleh metode CTAB (Doyle & Doyle, 1990) dengan pita DNA yang tebal dan jelas. Metode yang efektif dalam mengekstraksi DNA daun kumis kucing (Orthosiphon stamineus) kering adalah metode Doyle & Doyle (CTAB) yang memenuhi 3 dari 4 kriteria, yaitu konsentrasi DNA yang tinggi, visualisasi DNA menghasilkan pita DNA yang jelas, terang, serta waktu pengerjaan yang yang lebih cepat.

DAFTAR PUSTAKA

- Ardiana, D. W. 2009. Teknik Isolasi DNA Genom Tanaman Papaya dan Jeruk Dengan menggunakan Modifikasi Bufer CTAB. Buletin Teknik Pertanian 14(1): 12-16.
- Barbosa-Garcia, O., Ramos-Ortiz, G., Maldonado, J. L., Phicardo-Molina, J. L., Maneses-Nava, M. A., Landgrave, J. E. A., and Cervantes-Martinez, J. 2007. UV-Vis Absorption Spectroscopy and Multivariate Analysis as a Method to Discriminate Tequila. *Spectrochimica Acta A* 66(1): 129-134.
- Bintang, M. 2010. Biokimia Teknik Penelitian. Erlangga. Jakarta.
- Breemen, R. B. V., Harry, H. S. V., and Norman, R. F. 2007. The Role of Quality Assurance and Standardization in the Safety of Botanical Dietary Supplements. Chemical. Reseach and Toxicology. 20(4): 577-582.
- Bruijns, B., Hoekema, T., Oomens, L., Tiggelaar, R., and Gardeniers, H. 2022. Performance of Spectrophotometric and Fluorometric DNA Quantification Methods. Analytica 3: 371-384.

- Dellaporta, S. L., Wood, J., and Hicks, J. B. 1983. A Plant DNA Miniprepration: Version II. *Plant Molecular Biology Reporter* 1(4): 19-21.
- Dewanata, P. A. dan Mushlih, M. 2021. Perbedaan Uji Kemurnian DNA menggunakan Spektrofotometer UV-Vis dan Spektrofotometer Nanodrop pada Pasien Diabetes Melitus Tipe 2. *Indonesian Journal of Innovation Studies* 15: 6-10.
- Doyle, J. J. and Doyle, J. L. 1990. Isolation of Plant DNA from Fresh Tissue. Focus. 12: 13-15.
- Hernadi, E. 2018. Deteksi Pemalsuan dan Penentuan Simultan Dua Senyawa Penciri Bioaktif Herba Kumis Kucing menggunakan KCKT dan Kemometrik. (Tesis). Institut Pertanian Bogor. Bogor.
- Hutami, R., Idzni, N., Ranasasmita, R., dan Suprayatmi, M. 2017. Metode Ekstraksi DNA untuk Deteksi Molekuler. *Jurnal Pertanian* 8(2): 106.
- Invitrogen. 2014. *Qubit*® 3.0 Fluorometer User Guide. Catalog Number Q33216. Life Technologies Company.
- Jamil, S., and Loh, S. P. 2012. The Therapeutic Potential of *Orthosiphon stamineus* Benth. (Java Tea) in Various Health Indications. *Journal of Traditional and Complementary Medicine* 2(3): 158-170.
- Kapa Biosystems. 2014. KAPA2G Fast HotStart PCR Kit Technical Data Sheet (internet). Kapa Biosystems Inc., Wilmington, MA. (cited 2023 August 1). Available from: https://www.kapabiosystems.com/assets/KAPA2G Fast HotStart TDS.pdf.
- Langga, I. F., Restu, M., dan Kuswinanti, T. 2012. Optimalisasi Suhu dan Lama Inkubasi dalam Ekstraksi DNA Tanaman Bitti (*Vitex cofassus* Reinw.) serta Analisis Keragaman Genetik dengan Teknik RAPD-PCR. *Journal Sains & Teknologi* 12(3): 265 –-276.
- Li, J. T., Yang, J., Chen, D. C., Zhang, X. L., and Tang, Z. A. 2007. An Optimized Mini Preparation Method to Obtain High Quality Genomic DNA from Mature Leaves of Sunflower. *Genetics and Molecular Research* 6(4): 1064-1071.
- Lin, J. J. and Kuo, J. 1998. A New Reagent for Simple Isolation of Plant Genomic DNA. *Focus*. 20: 46-8.
- Martida, V., and Pharmawati, M. 2019. Comparison of DNA Yield from Different Plant Materials of *Plumeria* sp. (Apocynaceae). *Journal of Advances in Tropical Biodiversity and Environmental Sciences* 3(1): 8-11.
- Mazo, L. C., Alberto, G., Sonia, R. Q., Jaime, E. B., and Pedro, O. V. 2012. Extraction and Amplification of DNA from Orchid Exsiccates Conserv for More than Half a Century in a Herbarium in Bogota, Colombia. *Lankesteriana*. 12(2): 121-129.
- Michiels, A., Ende, W., Tucker, M., Riet, V. L., and Laere, V. A. 2003. Extraction of High-Quality Genomic DNA from Latex Containing Plants. *Analitical Biochemistry* 315: 85-89.
- Milligan, B. G. 1992. Plant DNA Isolation. In M. G. Murray and W. F. Thompson. Molecular Genetic Analysis of Populations. A Practical Approach. Oxford University Press, New York, USA.
- Moore, E., Arnscheidt, A., Kruger, A., Strompl, C., and Mau, M. 2004. Simplified Protocol for Preparation of Genomic DNA from Bacterial Cultures. In Akkrmans, A.D.L., Elsas, J.D.V.,

- De Bruijn, F.J. (eds). Molecular Microbial Ecology Manual. Kluwer Academic Publishers. Netherlands.
- Mulyani, Y., Purwanto, A., dan Nurruhwati, I. 2011. Perbandingan Beberapa Metode Ekstraksi DNA untuk Deteksi Dini Koi Herpes Virus (KHV) pada Ikan Mas (*Cyprinus carpio* L.). Fakultas Perikanan dan Ilmu Kelautan, Universitas Padjadjaran. *Jurnal Akuatika* 2(1):1-16
- Nurkamila, U. L., dan Pharmawati, M. 2014. Ekstraksi DNA dari Herbarium Anggrek. *Jurnal Simbiosis*. 2(1): 135-146.
- Pharmawati, M. 2009. Optimalisasi Ekstraksi DNA dan PCR-RAPD pada *Grevillea* spp. (Proteaceae). *Jurnal Biologi* 8(1): 12-16.
- Pharmawati, M., Yan, G., and McFarlane, I. J. 2004. Application of RAPD and ISSR Markers to Analyse Molecular Relationships in *Grevillea* (Proteaceae). *Australian Systematic Botany* 17(1): 49-61.
- Pratiwi, E., dan Widodo, L. I. 2020. Kuantifikasi Hasil Ekstraksi Gen sebagai Faktor Kritis untuk Keberhasilan Pemeriksaan RT-PCR. *Indonesian Journal for Health Sciences* 4(1): 1-9.
- Purwantara. 2001. Genetika, Biokimia dan Biologi Molekuler. PT Rineka Cipta. Bandung.
- Rawat, S., Joshi, G., Annapurna, D., Arunkumar, A. N., and Karaba, N. N. 2016. Standardization of DNA Extraction Method from Mature Dried Leaves and ISSR-PCR Conditions for *Melia dubia* Cav. a Fast Growing Multipurpose Tree Species. *American Journal of Plant Sciences* 7(3): 437-445.
- Rogers, S. O., and Bendich, A. J. 1985. Extraction of DNA from Milligram Amounts of Fresh, Herbarium and Mummified Plant Tissue. *Plant Molecular Biology* 5: 69-76.
- Sahu, S. K., Thangaraj, M., and Kathiresan, K. 2012. DNA Extraction Protocol for Plants With High Levels of Secondary Metabolites and Polysaccharides without using Liquid Nitrogen and Phenol. *ISRN Molecular Biology* 2012: 205049
- Sairhar, P., Chouhan, S., Batav, N., and Sharma, R. 2013. Optimization of DNA Isolation Process and Enhancement of RAPD-PCR for Low Quality Genomic DNA of *Terminalia arjuna*. *Journal Genetic Engineering and Biotechnology* 11(1): 17-24.
- Sambrook, J. and Russell, D. W. 1989. *Molecular Cloning: A Laboratory Manual 2nd Edition*. Cold Spring Harbor Laboratory Press. New York.
- Sembiring, E. R., Terryana, R.T., Anggraheni, Y. G. D., Prihaningsih, A., Batubara, I., Nurcholis, W., Ridwan, T., dan Harmoko, R. 2023. Efektivitas Metode Ekstraksi DNA pada Daun Segar dan Kering dari Tanaman Obat. *Vegetalika* 12(3): 211-227.
- Shankar, K., Chavan, L., Shinde, S., and Patil, B. 2011. An Improved DNA Extraction Protocol from Four in Vitro Banana Cultivars. *Asian Journal of Biotechnology* 3(1): 84-90.
- Sharma, K., Mishra, A. K., and Misra, R. S. 2008. A Simple and Efficient Method for Extraction of Genomic DNA from Tropical Tuber Crops. *African Journal of Biotechnology* 7(8): 1018-1022.
- Syafaruddin dan Santoso, T. J. 2011. Optimasi Teknik Ekstraksi dan Purifikasi DNA yang Efisien dan Efektif pada Kemiri Sunan (*Reutalis trisperma* (Blanco) Airy Shaw). *Jurnal Littr*. 17(1): 11-17.

eISSN: 2656-7784

- Syamkumar, S., Lowarence, B., and Sasikumar, B. 2003. Isolation and Amplification of DNA from Rhizomes of Turmeric and Ginger. Plant Molecular Biology Reporter 21: 171a-171e.
- Tai, T. H. and Tanksley, S. D. 1990. A Rapid and Inexpensive Method for Isolation of Total DNA from Dehydrated Plant Tissue. Plant Molecular Biology Reporter 8: 297-303.
- Varma, A., Padh, H., and Shrivastava, N. 2007. Plant Genomic DNA Isolation: An Art or A Science. Biotechnology Journal 2: 386-392.
- Vural, H. G., and Dageri, A. 2009. Optimization of DNA Isolation for RAPD-PCR Analysis of Selected (Echinaceae purpurea L. Moench) Medicinal Plants of Conservation Concern from Turkey. *Journal of Medicinal Plant Research* 3(1): 16-19.
- Widiyastuti, Y. 2015. Pedoman Budidaya Panen dan Pascapanen Tanaman Obat. Lembaga Penerbit Badan Penelitian dan Pengembangan Kesehatan. Jakarta.
- Zidani, S., Ferchichi, A., and Chaieb, M. 2005. Genomic DNA Extraction Method from Pearl Millet (Pennisetum glaucum) leaves. African Journal Biotechnology 4(8): 862-866.
- Zumbo, P. 2013. Ethanol Precipitation. Weill Cornell Medical College. USA.