Analisis Perbandingan dan Kinerja Sensor DHT22 dan DHT11 Berdasarkan Studi Literatur Prisma untuk Pengembangan IoT di Pertanian Lahan Rawa
The Comparative Analysis of DHT22 and DHT11 Sensor Performance Based On Prisma Literature Study for IoT Development in Swampland Agriculture
DOI:
https://doi.org/10.24843/JBETA.2025.v13.i02.p16Keywords:
DHT22, DHT11, arduinouno R3, lahan rawa, prismaAbstract
Penerapan Internet of Things (IoT) dalam sistem pertanian presisi menuntut penggunaan sensor yang akurat dan efisien untuk memantau parameter lingkungan seperti suhu dan kelembaban, terutama pada wilayah beriklim rawa yang dinamis dan memiliki fluktuasi tinggi pada permukaan air. Lahan rawa lebak menjadi lokasi strategis bagi pengembangan pertanian berkelanjutan karena perannya dalam mendukung ketahanan pangan nasional, meskipun produktivitasnya masih rendah akibat keterbatasan teknologi pemantauan lingkungan. Kondisi rawa lebak yang ditandai oleh perubahan muka air yang cepat, kelembaban tinggi, dan iklim mikro yang tidak stabil menuntut penggunaan sensor dengan akurasi serta bisa memiliki keandalan tinggi. Penelitian ini bertujuan membandingkan kinerja dua sensor suhu dan kelembaban, yakni DHT22 dan DHT11, pada sistem pemantauan berbasis Arduino Uno R3 untuk mendukung pengelolaan pertanian rawa. Metode penelitian menggunakan pendekatan Systematic Literature Review (SLR) dengan panduan PRISMA. Dari 150 artikel yang dihimpun, sebanyak 47 publikasi memenuhi kriteria inklusi dan dianalisis lebih lanjut. Hasil menunjukkan bahwa sensor DHT22 memiliki akurasi lebih tinggi (±0,5°C; ±2% RH), rentang pengukuran lebih luas, serta performa yang lebih stabil pada kelembaban tinggi dibandingkan DHT11 (±2°C; ±5% RH). Walaupun DHT11 lebih ekonomis dan cepat merespons, keterbatasannya menjadikannya kurang ideal untuk kondisi rawa lebak yang ekstrem. Arduino Uno R3 dinilai sebagai platform yang efisien untuk integrasi sistem pemantauan berbasis IoT secara real-time. Hasil penelitian ini memberikan rekomendasi teknis dalam pengembangan sistem pemantauan presisi di lahan rawa lebak guna meningkatkan produktivitas dan adaptasi terhadap perubahan iklim.
References
Abba, S., Namkusong, J. W., Lee, J. A., & Crespo, M. L. (2019). Design and performance evaluation of a low-cost autonomous sensor interface for a smart iot-based irrigation monitoring and control system. Sensors (Switzerland), 19(17). https://doi.org/10.3390/s19173643
Adhiwibowo, W., Firman Daru, A., & Hirzan, A. M. (2020). Temperature and Humidity Monitoring Using DHT22 Sensor and Cayenne API. TRANSFORMTIKA, 17(2), 209–214.
Ahmad, Y. A., Surya Gunawan, T., Mansor, H., Hamida, B. A., Fikri Hishamudin, A., & Arifin, F. (2021). On the Evaluation of DHT22 Temperature Sensor for IoT Application. Proceedings of the 8th International Conference on Computer and Communication Engineering, ICCCE 2021, 131–134. https://doi.org/10.1109/ICCCE50029.2021.9467147
Ahmed, N., De, D., & Hussain, I. (2018). Internet of Things (IoT) for Smart Precision Agriculture and Farming in Rural Areas. IEEE Internet of Things Journal, 5(6), 4890–4899. https://doi.org/10.1109/JIOT.2018.2879579
Alam, M., Islam, M. M., Nayan, N. M., & Uddin, J. (2025). An IoT Based Real-Time Environmental Monitoring System for Developing Areas. Journal of Advanced Research in Applied Sciences and Engineering Technology, 52(1), 106–121. https://doi.org/10.37934/araset.52.1.106121
Ali, A., & Alshmrany, S. (2020). Internet of things (IoT) embedded smart sensors system for agriculture and farm management. International Journal of Advanced and Applied Sciences, 7(10), 38–45. https://doi.org/10.21833/ijaas.2020.10.005
Ansari, S., Ansari, A., Kumar, A., Kumar, R., & Nyamasvisva, E. T. (2023). Environmental Temperature and Humidity Monitoring at Agricultural Farms using Internet of Things & DHT22-Sensor. Journal of Independent Studies and Research Computing, 21(2), 25–31. https://doi.org/10.31645/jisrc.23.21.2.5
Ardiansah, I., Bafdal, N., Suryadi, E., & Bono, A. (2020). Greenhouse Monitoring and Automation Using Arduino: a Review on Precision Farming and Internet of Things (IoT). 10(2).
Azhari, Nasution, T. I., Sinaga, S. H., & Sudiati. (2023). Design of Monitoring System Temperature And Humidity Using DHT22 Sensor and NRF24L01 Based on Arduino. Journal of Physics: Conference Series, 2421(1). https://doi.org/10.1088/1742-6596/2421/1/012018
Barik, L. (2019). IoT based temperature and humidity controlling using Arduino and Raspberry Pi. International Journal of Advanced Computer Science and Applications, 10(9), 494–502. https://doi.org/10.14569/ijacsa.2019.0100966
Bu, F., & Wang, X. (2019). A smart agriculture IoT system based on deep reinforcement learning. Future Generation Computer Systems,
, 500–507. https://doi.org/10.1016/j.future.2019.04.041
Cao, X., Yao, Y., Li, L., Zhang, W., An, Z., Zhang, Z., Xiao, L., Guo, S., Cao, X., Wu, M., & Luo, D. (2021). IGrow: A Smart Agriculture Solution to Autonomous Greenhouse Control. http://arxiv.org/abs/2107.05464
Datta, S., Wadikar, Y., & Gopinath, T. (n.d.). TEMPERATURE AND HUMIDITY SENSOR USING ARDUINO.
El, I., Pakpahan, A., & Hasibuan, U. (2024). Analisis Kinerja Sensor DHT11 Pada Alat Pendeteksi Suhu Menggunakan Metode Fuzzy Logic. JIKTEKS : Jurnal Ilmu Komputer Dan Teknologi Informasi, 03(01). https://doi.org/10.70404/jikteks.v3i01.144
Et-taibi, B., Abid, M. R., Boufounas, E. M., Morchid, A., Bourhnane, S., Abu Hamed, T., & Benhaddou, D. (2024). Enhancing water management in smart agriculture: A cloud and IoT-Based smart irrigation system. Results in Engineering, 22. https://doi.org/10.1016/j.rineng.2024.102283
Farooq, M. S., Riaz, S., Abid, A., Umer, T., & Zikria, Y. Bin. (2020). Role of iot technology in agriculture: A systematic literature review. In Electronics (Switzerland) (Vol. 9, Issue 2). MDPI AG. https://doi.org/10.3390/electronics9020319
Gupta, R., Das, C., Roy, A., Ganguly, R., & Datta, A. (n.d.). Arduino based temperature and humidity control for condensation on wettability engineered surfaces.
Hadi, C. F., Yasi, R. M., & Prasetyo, A. (2024). Model Decision Tree Forecasting Berbasis DHT22 pada Smart Hydroponic Microgreen. Journal of Telecommunication Electronics and Control Engineering (JTECE), 6(1), 29–38. https://doi.org/10.20895/jtece.v6i1.1218
Islam, J., Habiba, U., Kabir, H., Golam Martuza, K., Akter, F., Hafiz, F., Abu Sayid Haque, M., Hoq, M., Abdul Mannan Chowdhury, M., & Author, C. (n.d.). Design and Development of Microcontroller Based Wireless Humidity Monitor. 13(2), 41–46. https://doi.org/10.9790/1676-1302034146
Javed Mehedi Shamrat, F., Ahasanul Adeeb Khan MEng in Internetworking, M., Hossain, A., Khater, A., Roy, T., & Tareq Rahman, M. (n.d.). IoT Based Smart Automated Agriculture and Real Time Monitoring System.
Koestoer, R. A., Pancasaputra, N., Roihan, I., & Harinaldi. (2019). A simple calibration methods of relative humidity sensor DHT22 for tropical climates based on Arduino data acquisition system. AIP Conference Proceedings, 2062. https://doi.org/10.1063/1.5086556
Krishnan, R. S., Julie, E. G., Robinson, Y. H., Raja, S., Kumar, R., Thong, P. H., & Son, L. H. (2020). Fuzzy Logic based Smart Irrigation System using Internet of Things. Journal of Cleaner Production, 252. https://doi.org/10.1016/j.jclepro.2019.119902
Kusumo, L. A. (2025). Implementation of Median Filter in Data Processing of Temperature and Humidity Monitoring System with DHT 11 and DHT 22 Sensors. Sistem Kendali & Jaringan) E-ISSN, 4, 2808–3520. https://doi.org/10.58982/krisnadana.v4i2.723
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. In The BMJ (Vol. 372). BMJ Publishing Group. https://doi.org/10.1136/bmj.n71
Paul Kuria, K., Ochieng Robinson, O., & Mutava Gabriel, M. (n.d.). Monitoring Temperature and Humidity using Arduino Nano and Module-DHT11 Sensor with Real Time DS3231 Data Logger and LCD Display. www.ijert.org
Podder, A. K., Bukhari, A. Al, Islam, S., Mia, S., Mohammed, M. A., Kumar, N. M., Cengiz, K., & Abdulkareem, K. H. (2021). IoT based smart agrotech system for verification of Urban farming parameters. Microprocessors and Microsystems, 82. https://doi.org/10.1016/j.micpro.2021.104025
Priyonggo, B., Wardani, I. K., Ichniarsyah, A. N., Telaumbanua, M., Mufidah, Z., Dewangga, D. A., Tata, S., Pertanian, A., Enjiniring, P., Indonesia, P., Teknologi, S., Pertanian, M., Pembangunan, P., Bogor, P., Studi, P., Pertanian, T., Lampung, U., Studi, P., … Selatan, L. (2023). Perancangan dan Uji Kinerja Sistem Kendali Iklim Mikro di Smart Greenhouse Politeknik Pembangunan Pertanian Bogor. 17(3), 161–166. https://doi.org/10.24198/jt.vol17n3.1
Puspasari, F., Satya, T. P., Oktiawati, U. Y., Fahrurrozi, I., & Prisyanti, H. (2020). Analisis Akurasi Sistem sensor DHT22 berbasis Arduino terhadap Thermohygrometer Standar. Jurnal Fisika Dan Aplikasinya, 16(1), 40. https://doi.org/10.12962/j24604682.v16i1.5776
Puspitahati, P., Kelana, F. B., & Aulia, N. I. (2025). Efektivitas dalam Memantau dan Mengontrol Sistem Hidroponik Apung pada Pertumbuhan Pakcoy Berbasis Sensor TDS Arduino Uno R3. Jurnal Teknotan, 19(1), 49–56. https://doi.org/10.24198/jt.vol19n1.7
Quy, V. K., Hau, N. Van, Anh, D. Van, Quy, N. M., Ban, N. T., Lanza, S., Randazzo, G., & Muzirafuti, A. (2022). IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges. In Applied Sciences (Switzerland) (Vol. 12, Issue 7). MDPI. https://doi.org/10.3390/app12073396
Rustami, E., Fitria Adiati, R., Zuhri, M., & Arif Setiawan, A. (2022). Uji Karakteristik Sensor Suhu Dan Kelembaban Multi-Channel Menggunakan Platform Internet Of Things (IoT) (Vol. 25, Issue 2).
Saez, A., Barnes, C., & Mendenhall, A. (2025). Design and implementation of a sensor-integrated system for evaluating evaporative cooling performance. Journal of Building Engineering, 103. https://doi.org/10.1016/j.jobe.2025.112153
Saleh, K., Akbar Syahbana Pane, M., Adnan Khan, M., Rumah Sakit, J. H., Baru, K., Percut Sei Tuan, K., Deli Serdang, K., & Utara, S. (2025).
Measuring Soil Moisture in Real-Time: Arduino Uno Based Tool Innovation Corresponding Author. In Journal of Information System and Technology Research journal homepage (Vol. 4, Issue 1). http://creativecommons.org/licenses/by-sa/4.0/
Santo Gitakarma, M., Putu Ary Sri Tjahyanti, L., & Korespondensi, P. (2024). Perbandingan Kinerja Sistem Monitoring Dan Kontrol Iot Berbasis Fuzzy Logic Dengan Kontrol Manual Dalam Model Skala Kecil Comparison Of Iot-Based Monitoring And Control System Performance Using Fuzzy Logic And Manual Control In A Small-Scale Model. Jurnal Komputer Dan Teknologi Sains (KOMTEKS), 3(1), 23–28.
Shiddiqy, M. I. A., & Sunardi, S. (2024). Performance Analysis of LDR, Photodiode, and BH1750 Sensors for Sunlight Intensity Measurement in Open Areas. Signal and Image Processing Letters, 6(1), 11–26. https://doi.org/10.31763/simple.v6i1.96
Singh, R. K., Berkvens, R., & Weyn, M. (2021). AgriFusion: An Architecture for IoT and Emerging Technologies Based on a Precision Agriculture Survey. In IEEE Access (Vol. 9, pp. 136253–136283). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2021.3116814
Siskandar, R., Santosa, S. H., Wiyoto, W., Kusumah, B. R., & Hidayat, A. P. (2022). Control and Automation: Insmoaf (Integrated Smart Modern Agriculture and Fisheries) on The Greenhouse Model. Jurnal Ilmu Pertanian Indonesia, 27(1), 141–152. https://doi.org/10.18343/jipi.27.1.141
Siswoyo, A. (2025). Optimization of Temperature Sensor Selection for Incubators: Real-Time Accuracy Analysis of DHT22, LM35, and DS18B20 in Controlled Environment Simulations. Internet of Things and Artificial Intelligence Journal, 5(1). https://doi.org/10.31763/iota.v5i1.877
Sonawane, R. N., Ghule, A. S., Bowlekar, A. P., & Zakane, A. H. (2019). Design and Development of Temperature and Humidity Monitoring System. Agricultural Science Digest, 39(2), 114–118. https://doi.org/10.18805/ag.D-4893
Ullo, S. L., & Sinha, G. R. (2020). Advances in smart environment monitoring systems using iot and sensors. In Sensors (Switzerland) (Vol. 20, Issue 11). MDPI AG. https://doi.org/10.3390/s20113113
Umam, C., Suhartono, S., & Saputro, E. (2022). Pendekatan Logika Fuzzy dalam Pengontrolan Suhu dan Kelembaban pada Persemaian Otomatis Full Closed System Tanaman Selada Hijau (Lactuca sativa L.). Jurnal Keteknikan Pertanian Tropis Dan Biosistem, 10(2), 144–153. https://doi.org/10.21776/ub.jkptb.2022.010.02.07
Utama, Y; Widianto, Y; Sardjono T.A; Kusuma, H. (2019). perbandingan kualitas sensor.
Vedulla, T., Reddy, Y. M., Kalyan, A., & Jenila, R. (2021). VLSI Architecture for Smart and Precision Agriculture using Sensors. In International Journal of Advanced Computing Science and Engineering (Vol. 3, Issue 1).
Vij, A., Vijendra, S., Jain, A., Bajaj, S., Bassi, A., & Sharma, A. (2020). IoT and Machine Learning Approaches for Automation of Farm Irrigation System. Procedia Computer Science, 167, 1250–1257. https://doi.org/10.1016/j.procs.2020.03.440
Wardani, I. K., Ichniarsyah, A. N., Telaumbanua, M., Priyonggo, B., Fil’Aini, R., Mufidah, Z., & Dewangga, D. A. (2023). The feasibility study: Accuracy and precision of DHT 22 in measuring the temperature and humidity in the greenhouse. IOP Conference Series: Earth and Environmental Science, 1230(1). https://doi.org/10.1088/1755-1315/1230/1/012146
Wibowo, Y., Prasetyadana, F. E., & Suryadharma, B. (2021). Implementasi Monitoring Suhu dan Kelembaban pada Budidaya Jamur Tiram dengan IOT. Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering), 10(3), 380. https://doi.org/10.23960/jtep-l.v10i3.380-391
Xu, J., Gu, B., & Tian, G. (2022). Review of agricultural IoT technology. In Artificial Intelligence in Agriculture (Vol. 6, pp. 10–22). KeAi Communications Co. https://doi.org/10.1016/j.aiia.2022.01.001
Yantahin, M., Sulis Marshanda Basri, Satria Gunawan Zain, & Ruslan. (2024). Pengembangan Perangkat Multi Sensor Untuk Precision Farming Monitoring Media Tanam. Journal of Embedded Systems, Security and Intelligent Systems, 5(2), 99–108. https://doi.org/10.59562/jessi.v5i2.3928
Yulizar, D., Soekirno, S., Ananda, N., Prabowo, M. A., Perdana, I. F. P., & Aofany, D. (2023). Performance Analysis Comparison of DHT11, DHT22 and DS18B20 as Temperature Measurement (pp. 37–45). https://doi.org/10.2991/978-94-6463-232-3_5
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Puspitahati Puspitahati, Anggriyani Anggriyani, Haisen Hower

This work is licensed under a Creative Commons Attribution 4.0 International License.
License Term
All articles published in Jurnal Beta (Biosistem dan Teknik Pertanian) are open access and licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This means that anyone is free to:
-
Share — copy and redistribute the material in any medium or format.
-
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
However, this is granted under the following conditions:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
By submitting an article to Jurnal Beta (Biosistem dan Teknik Pertanian), authors agree to the publication of their work under this open access license. The authors retain the copyright of their work, but grant Jurnal Beta (Biosistem dan Teknik Pertanian) the right of first publication.
For more information about the CC BY 4.0 license, please visit the official website: https://creativecommons.org/licenses/by/4.0/