This is an outdated version published on 2026-02-09. Read the most recent version.

Application of nonthermal plasma on fresh produce

Authors

  • Gede Arda Program Studi Teknik Pertanian dan Biosistem, Fakultas Teknologi Pertanian, Universitas Udayana, Bali, Indonesia

DOI:

https://doi.org/10.24843//JBETA.2023.v11.i02.p19%20Abstract

Keywords:

cold plasma, fresh produce, physiological properties, food safety

Abstract

Non-thermal plasma is ionized gas which comprised of neutral molecules, excited atom, and charged
molecules. Some of the molecules are so very reactive that react rapidly to almost organic or non-organic
matter. Due to its properties, plasma is recently applied to decontaminate agricultural products from various
contaminants. In the case of fresh produce such fruit and vegetable, non-thermal plasma is used to kill
bacteria and other microorganisms attached to a product’s surface, or to degrade the pesticide residues
coating the product. These contaminants affect product quality in a certain way thus, they could reduce the
profit gain by producers, handlers, and sellers. Some mechanisms explained how non-thermal plasma
reduce the level of contaminant have been proposed by researchers. The point are the reactive species
damage the cell wall of microorganisms making them non-viable or damaged, and they could react to
pesticide compounds as well and degrade them to less harmful compounds. However, the same reactive
species not only react to target-matter but also react to product tissues around the plasma applied and affect
the quality of the treated product. This paper reviews the effect of non-thermal plasma on fresh product
quality from physical, physiological, chemical, and microbiological viewpoints.

References

Al-Mazrou. (2004). Food poisoning. Saudi Med J,

25(1), 11–14. www.smj.org.sa

Bang, I. H., Lee, E. S., Lee, H. S., & Min, S. C.

(2020). Microbial decontamination system

combining antimicrobial solution washing and

atmospheric dielectric barrier discharge cold

plasma treatment for preservation of

mandarins. Postharvest Biology and

Technology, 162(September 2019), 111102.

https://doi.org/10.1016/j.postharvbio.2019.111

102

Barrett, D. M., Beaulieu, J. C., & Shewfelt, R.

(2010). Color, flavor, texture, and nutritional

quality of fresh-cut fruits and vegetables:

Desirable levels, instrumental and sensory

measurement, and the effects of processing.

Critical Reviews in Food Science and

Nutrition, 50(5), 369–389.

https://doi.org/10.1080/10408391003626322

Bermúdez-Aguirre, D., & Barbosa-Cánovas, G. V.

(2013). Disinfection of selected vegetables

under nonthermal treatments: Chlorine, acid

citric, ultraviolet light and ozone. Food

Control, 29(1), 82–90.

https://doi.org/10.1016/j.foodcont.2012.05.073

Elez Garofulić, I., Režek Jambrak, A., Milošević, S.,

Dragović-Uzelac, V., Zorić, Z., & Herceg, Z.

(2015). The effect of gas phase plasma treatment on the anthocyanin and phenolic acid

content of sour cherry Marasca (Prunus

cerasus var. Marasca) juice. LWT - Food

Science and Technology, 62(1), 894–900.

https://doi.org/10.1016/J.LWT.2014.08.036

Go, S. M., Park, M. R., Kim, H. S., Choi, W. S., &

Jeong, R. D. (2019). Antifungal effect of non

thermal atmospheric plasma and its application

for control of postharvest Fusarium oxysporum

decay of paprika. Food Control, 98, 245–252.

https://doi.org/10.1016/j.foodcont.2018.11.028

Gómez-López, V. M., Ragaert, P., Debevere, J., &

Devlieghere, F. (2007). Pulsed light for food

decontamination: a review. Trends in Food

Science and Technology, 18(9), 464–473.

https://doi.org/10.1016/j.tifs.2007.03.010

Herceg, Z., Kovačević, D. B., Kljusurić, J. G.,

Jambrak, A. R., Zorić, Z., & Dragović-Uzelac,

V. (2016). Gas phase plasma impact on

phenolic compounds in pomegranate juice.

Food Chemistry, 190, 665–672.

https://doi.org/10.1016/J.FOODCHEM.2015.0

5.135

Joshi, S. G., Cooper, M., Yost, A., Paff, M., Ercan,

U. K., Fridman, G., Friedman, G., Fridman,

A., & Brooks, A. D. (2011). Nonthermal

dielectric-barrier discharge plasma-induced

inactivation involves oxidative DNA damage

and membrane lipid peroxidation in

Escherichia coli. Antimicrobial Agents and

Chemotherapy, 55(3), 1053–1062.

https://doi.org/10.1128/AAC.01002-10

Lacombe, A., Niemira, B. A., Gurtler, J. B., Fan, X.,

Sites, J., Boyd, G., & Chen, H. (2015).

Atmospheric cold plasma inactivation of

aerobic microorganisms on blueberries and

effects on quality attributes. Food

Microbiology, 46, 479–484.

https://doi.org/10.1016/j.fm.2014.09.010

Lepeduš, H., Jozić, M., Štolfa, I., Pavičić, N.,

Hackenberger, B. K., & Cesar, V. (2005).

Changes in peroxidase activity in the peel of

Unshiu mandarin (Citrus unshiu Marc.) fruit

with different storage treatments. Food

Technology and Biotechnology, 43(1), 71–77.

https://hrcak.srce.hr/110432

Misra, N. N., Keener, K. M., Bourke, P., Mosnier, J.

P., & Cullen, P. J. (2014). In-package

atmospheric pressure cold plasma treatment of

cherry tomatoes. Journal of Bioscience and

Bioengineering, 118(2), 177–182.

https://doi.org/10.1016/j.jbiosc.2014.02.005

Misra, N. N., Patil, S., Moiseev, T., Bourke, P.,

Mosnier, J. P., Keener, K. M., & Cullen, P. J.

(2014). In-package atmospheric pressure cold

plasma treatment of strawberries. Journal of Food Engineering, 125(1), 131–138.

https://doi.org/10.1016/j.jfoodeng.2013.10.023

Mravlje, J., Regvar, M., Starič, P., Mozetič, M., &

Vogel-Mikuš, K. (2021). Cold plasma affects

germination and fungal community structure

of buckwheat seeds. Plants, 10(5), 851.

https://doi.org/10.3390/PLANTS10050851/S1

Mravlje, J., Regvar, M., & Vogel-Mikuš, K. (2021).

Development of Cold Plasma Technologies for

Surface Decontamination of Seed Fungal

Pathogens: Present Status and Perspectives.

Journal of Fungi 2021, Vol. 7, Page 650, 7(8),

650. https://doi.org/10.3390/JOF7080650

Mukhopadhyay, S., & Ramaswamy, R. (2012).

Application of emerging technologies to

control Salmonella in foods: A review. Food

Research International, 45(2), 666–677.

https://doi.org/10.1016/j.foodres.2011.05.016

Oehmigen, K., Hähnel, M., Brandenburg, R., Wilke,

C., Weltmann, K. D., & Von Woedtke, T.

(2010). The role of acidification for

antimicrobial activity of atmospheric pressure

plasma in liquids. Plasma Processes and

Polymers, 7(3–4), 250–257.

https://doi.org/10.1002/ppap.200900077

Olaimat, A. N., & Holley, R. A. (2012). Factors

influencing the microbial safety of fresh

produce: A review. Food Microbiology, 32(1),

1–19. https://doi.org/10.1016/j.fm.2012.04.016

Paixão, L. M. N., Fonteles, T. V., Oliveira, V. S.,

Fernandes, F. A. N., & Rodrigues, S. (2019).

Cold Plasma Effects on Functional

Compounds of Siriguela Juice. Food and

Bioprocess Technology, 12(1), 110–121.

https://doi.org/10.1007/s11947-018-2197-z

Ramazzina, I., Berardinelli, A., Rizzi, F., Tappi, S.,

Ragni, L., Sacchetti, G., & Rocculi, P. (2015).

Effect of cold plasma treatment on physico

chemical parameters and antioxidant activity

of minimally processed kiwifruit. Postharvest

Biology and Technology, 107, 55–65.

https://doi.org/10.1016/j.postharvbio.2015.04.0

08

Ritchie, H., Rosado, P., & Roser, M. (2023). Diet

Compositions. Our World in Data.

https://ourworldindata.org/diet-compositions

Rodríguez, Ó., Gomes, W. F., Rodrigues, S., &

Fernandes, F. A. N. (2017). Effect of indirect

cold plasma treatment on cashew apple juice

(Anacardium occidentale L.). LWT, 84, 457

463.

https://doi.org/10.1016/J.LWT.2017.06.010

Scholtz, V., Jirešová, J., Šerá, B., & Julák, J. (2021).

A Review of Microbial Decontamination of

Cereals by Non-Thermal Plasma. Foods 2021, Vol. 10, Page 2927, 10(12), 2927.

https://doi.org/10.3390/FOODS10122927

Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., &

Julak, J. (2015). Nonthermal plasma — A tool

for decontamination and disinfection.

Biotechnology Advances, 33(6), 1108–1119.

https://doi.org/10.1016/j.biotechadv.2015.01.0

02

Stintzing, F. C., & Carle, R. (2004). Functional

properties of anthocyanins and betalains in

plants, food, and in human nutrition. Trends in

Food Science and Technology, 15(1), 19–38.

https://doi.org/10.1016/j.tifs.2003.07.004

Tappi, S., Gozzi, G., Vannini, L., Berardinelli, A.,

Romani, S., Ragni, L., & Rocculi, P. (2016).

Cold plasma treatment for fresh-cut melon

stabilization. Innovative Food Science and

Emerging Technologies, 33, 225–233.

https://doi.org/10.1016/j.ifset.2015.12.022

Toivonen, P. M. A., & Brummell, D. A. (2008).

Biochemical bases of appearance and texture

changes in fresh-cut fruit and vegetables.

Postharvest Biology and Technology, 48(1), 1

14.

https://doi.org/10.1016/j.postharvbio.2007.09.0

04

Veerana, M., Yu, N., Ketya, W., & Park, G. (2022).

Application of Non-Thermal Plasma to Fungal

Resources. Journal of Fungi 2022, Vol. 8,

Page 102, 8(2), 102.

https://doi.org/10.3390/JOF8020102

Wang, R. X., Nian, W. F., Wu, H. Y., Feng, H. Q.,

Zhang, K., Zhang, J., Zhu, W. D., Becker, K.

H., & Fang, J. (2012). Atmospheric-pressure

cold plasma treatment of contaminated fresh

fruit and vegetable slices: Inactivation and

physiochemical properties evaluation.

European Physical Journal D, 66(10).

https://doi.org/10.1140/epjd/e2012-30053-1

Wismer, W. V. (2014). Consumer Eating Habits and

Perceptions of Fresh Produce Quality. In

Postharvest Handling: A Systems Approach.

Elsevier Inc. https://doi.org/10.1016/B978-0

12-408137-6.00003-X

Won, M. Y., Lee, S. J., & Min, S. C. (2017).

Mandarin preservation by microwave-powered

cold plasma treatment. Innovative Food

Science and Emerging Technologies, 39, 25

32. https://doi.org/10.1016/j.ifset.2016.10.021

Xiang, Q., Liu, X., Liu, S., Ma, Y., Xu, C., & Bai,

Y. (2019). Effect of plasma-activated water on

microbial quality and physicochemical

characteristics of mung bean sprouts.

Innovative Food Science and Emerging

Technologies, 52, 49–56.

https://doi.org/10.1016/j.ifset.2018.11.012

Published

2023-09-30 — Updated on 2026-02-09

Versions

How to Cite

Arda, G. (2026). Application of nonthermal plasma on fresh produce . Jurnal BETA (Biosistem Dan Teknik Pertanian), 11(2), 411–417. https://doi.org/10.24843//JBETA.2023.v11.i02.p19 Abstract (Original work published September 30, 2023)

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2