Design of Greenhouse Microclimate Monitoring and Controlling System Based on Android
DOI:
https://doi.org/10.24843/JBETA.2022.v10.i01.p05Keywords:
greenhouse, mikroclimate, automatic monitoring and controlling, android, blynkAbstract
As the growth of development technology in agriculture, more automation technologies are used especially those applied to greenhouses. One of the uses of technology is automatic mircroclimate monitoring and controlling using sensor. Microclimate monitoringand controlling is important to maintain the plant’s environment so that it can grow optimally. The mircroclimates that were monitored and controlled in this research weretemperature, air humidity, and light intensity. The purpose of this research wastobuild amonitoring and controlling system for temperature, air humidy, dan light intensity in the greenhouse in an android smartphone connected to the internet. Arduino Mega 2560 wasused in this study as a microcontroller connected to DHT22 sensor and BH1750 sensor wereused to measure the mircroclimate automatically, ESP8266 as the wifi modul to link arduino and android via internet, as well as relayto control fan exhaust, LED grow light, and misting pumps as output control. This system wasequipped with an input setting point so user can adjust each microclimate according to the plant needs and control the output device automatically. The result of this research is a monitoring and controlling system in a greenhouse prototype with a length of 80 cm, 40 cm high, and 40 cm wide using the DHT22 sensors with an error of 2.2% for temperature measurement, 3,86% for air humidity measurement, and the BH1750 sensor which has been calibrated with 3,7% error for light intensity.The system can work properly where mircroclimare conditions can be monitored and controlled automatically from the application.
References
Adriantantri, E., & Irawan, J. (2018). Implementasi IoT pada remote monitoring dan controlling greenhouse. Jurnal MNEMONIC, 1(1), 56–60.
Bhosure, A., Bhosure, M., & Sharma, R. (2016). Web-based greenhouse environment monitoring and controlling system using Arduino platform. International Journal of Scientific Engineering and Applied Science (IJSEAS), 2(2), 450–454.
Budisanjaya, I. P. G., & Sucipta, I. N. (2018). Rancang bangun pengendali suhu, kelembaban udara, dan cahaya dalam greenhouse berbasis Arduino dan Android. Jurnal Ilmiah Teknologi Pertanian Agrotechno, 3(2), 325–337.
Doherty, K., & Cross, B. (2016). Greenhouse monitoring and automation. University of Manitoba.
Hashim, N. M. Z., Mazlan, S. R., Abd Aziz, M. Z. A., Salleh, A., Ja’Afar, A. S., & Mohamad, N. R. (2015). Agriculture monitoring system: A study. Jurnal Teknologi (Sciences & Engineering), 77(1), 53–59.
Khaldun, A., Arif, I., & Abbas, F. (2015). Design and implementation a smart greenhouse. International Journal of Computer Science and Mobile Computing, 4(8), 335–347.
Kouhia, E. (2016). Development of an Arduino-based embedded system. Centria University of Applied Sciences.
Lichtenberg, E., Majsztrik, J., & Saavoss, M. (2013). Profitability of sensor-based irrigation in greenhouse and nursery crops. HortTechnology, 23(6), 770–774.
Mechalikh, C. E., & Bouafia, R. (2017). IoT based system for greenhouses remote monitoring and climate control. Kasdi Merbah University.
Nuvvula, J., Adiraju, S., Mubin, S., Bano, S., & Valisetty, V. R. (2017). Environmental smart agriculture monitoring system. International Journal of Pure and Applied Mathematics, 115(6), 313–320.
Pamungkas, M., Hafiddudin, H., & Rohmah, Y. S. (2015). Perancangan dan realisasi alat pengukur intensitas cahaya. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, dan Teknik Elektronika, 3(2), 120.
Puspasari, F., Satya, T. P., Oktiawati, U. Y., Fahrurrozi, I., & Prisyanti, H. (2020). Analisis akurasi sistem sensor DHT22 berbasis Arduino terhadap thermohygrometer standar. Jurnal Fisika dan Aplikasinya, 16(1), 40.
Saha, T., Jewel, M. K. H., Mostakim, M. N., Bhuiyan, N. H., Ali, M. S., Rahman, M. K., Ghosh, H. K., & Hossain, M. K. (2017). Construction and development of an automated greenhouse system using Arduino Uno. International Journal of Information Engineering and Electronic Business, 9(3), 1–8.
Seto, A., Arifin, Z., & Maharani, S. (2015). Rancang bangun sistem pengendali suhu dan kelembaban pada miniatur greenhouse menggunakan mikrokontroler Atmega 8. Prosiding Seminar Tugas Akhir FMIPA UNMUL 2015.
Shirsath, P. D., Kamble, P., Mane, R., Kolap, A., & More, P. R. S. (2017). IoT based smart greenhouse automation using Arduino. International Journal of Innovative Research in Computer Science & Technology, 5(2), 234–238.
Telaumbanua, M., Purwantana, B., & Sutiarso, L. (2014). Rancang bangun aktuator pengendali iklim mikro di dalam greenhouse untuk pertumbuhan tanaman sawi (Brassica rapa var. parachinensis L.). Agritech: Jurnal Fakultas Teknologi Pertanian UGM, 34(2), 213–222.
Wali, V., Dalvi, Y., Subhash, V., Sharma, H., & Nair, V. (2017). Automated greenhouse. Imperial Journal of Interdisciplinary Research, 2(3), 1216–1219.
Wicaksana, N., Hadary, F., & Hartoyo, A. (2018). Rancang bangun sistem monitoring smart greenhouse berbasis Android dengan aplikasi sensor suhu, kelembaban udara, dan tanah untuk budidaya jamur merang. Jurnal Teknik Elektro Universitas Tanjungpura, 2(1).
Wiguna, I. K. W., Wijaya, I. M. A. S., & Nada, I. M. (2015). Pertumbuhan tanaman krisan (Chrysanthemum) dengan berbagai penambahan warna cahaya lampu LED selama 30 hari pada fase vegetatif. Jurnal BETA (Biosistem dan Teknik Pertanian), 3(2), 1–11.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
License Term
All articles published in Jurnal Beta (Biosistem dan Teknik Pertanian) are open access and licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This means that anyone is free to:
-
Share — copy and redistribute the material in any medium or format.
-
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
However, this is granted under the following conditions:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
By submitting an article to Jurnal Beta (Biosistem dan Teknik Pertanian), authors agree to the publication of their work under this open access license. The authors retain the copyright of their work, but grant Jurnal Beta (Biosistem dan Teknik Pertanian) the right of first publication.
For more information about the CC BY 4.0 license, please visit the official website: https://creativecommons.org/licenses/by/4.0/