Profenofos Insecticide Residue Detection on Red Chili (Capsicum annum L.) through Image Augmentation and CNN (Convolutional Neural Network)

Authors

  • Zulfa Hana Maulida
  • I Putu Gede Budisanjay
  • I Made Supartha Utama
  • Chathawan Chaicana
  • Wahyu Nurkholis Hadi Syahputra

DOI:

https://doi.org/10.24843/JBETA.2024.v12.i02.p11

Keywords:

Image Augmentation, CNN, Profenofos Insecticide

Abstract

The use of i nsecticide in agriculture is rapidly increasing but also faces challenges related to their negative impacts on human health and the environment. One commonly used insecticide is profenofos. Farmers frequently use Profenofo s to control pests on red chili plants in Indonesia. Therefore, detecting profenofos insecticide residue on chili is crucial to ensure the safety of chili consumption. This study aims to develop a new method for detecting profenofos insecticide residues on red chilies (Capsicum Ann um L.) through image augmentation and CNN (Convolutional Neural Network). In this study, insecticide solution preparation, chili image acquisition, testing with GC (Gas Chromatography) Agilent 6890 , image preprocessing, and CNN model implementation were co nducted. Insecticide solution spraying was conducted on 15 chili es with concentrations of 0 and 10 mg/l, followed by smartphone image acquisition, resulting in 30 images . Subsequently, each image was augmented 50 times, resulting in 1530 images. This proce ss involves rotation, shifting, zoom , a nd horizontal and vertical flipping. The CNN model, consisting of convolution layers and fully connected layers, was trained with the Adam optimizer, categorical cross - entropy loss function, the learning rate of 0,000 1, and trained for 20 epochs. The analysis results indicate that the model achieved an accuracy of 85% with precision, recall, and F1 - score values of 0,86 , 0,85, and 0,84, respectively. Based on these results, it can be concluded that the image augmentatio n and CNN method successfully detected profenofos insecticide residues on red chilies at concentrations of 0 and 10 mg/l.

References

Akram, A., Fayakun, K., & Ramza, H. (2023). Klasifikasi Hama Serangga pada Pertanian Menggunakan Metode Convolutional Neural Network. Building of Informatics, Technology and Science (BITS), 5(2). https://doi.org/10.47065/bits.v5i2.4063

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021).Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53. https://doi.org/10.1186/s40537-021-00444-8

Amin, F., & Mahmoud, M. (2022). Confusion matrix in binary classification problems: a step-by-step tutorial. Journal of Engineering Research, 6(5), 0.http://dx.doi.org/10.21608/erjeng.2022.274526

Ardiwinata, A. N., Ginoga, L. N., Sulaeman, E., & Harsanti, E. S. (2018). Pesticide residue monitoring on agriculture in Indonesia.

300Jurnal Sumberdaya Lahan, 12(2), 133–144.

Ashraf, H. N., Walayat, N., Saleem, M. H., Niaz, N., Hafeez, A., Atiq, M. N., Chattha, M. S., El-Sheikh, M. A., & Ali, S. (2022). Determination of pesticide residues from grapes procured from different markets using through high performance liquid chromatography (HPLC). Pakistan Journal of Botany, 54(2), 737–741. http://dx.doi.org/10.30848/PJB2022-2(19)

Badan Pusat Statistik. (2023). Produksi Tanaman Sayuran 2022.

Banerjee, K., & Hübschmann, H.-J. (2022). Automation in Pesticide Residue Analysis in Foods: A Step toward Smarter Laboratories and Green Chemistry. ACS Agricultural Science & Technology, 2(3), 426–429. https://doi.org/10.1021/acsagscitech.2c00126

Deepalakshmi, P., Lavanya, K., & Srinivasu, P. N. (2021). Plant leaf disease detection using CNN algorithm. International Journal of Information System Modeling and Design (IJISMD), 12(1), 1–21. https://doi.org/10.4018/IJISMD.2021010101

Dijk, T. van, & Croon, G. de. (2019). How do neural networks see depth in single images? Proceedings of the IEEE/CVF International Conference onComputer Vision, 2183–2191.

Elngar, A. A., Arafa, M., Fathy, A., Moustafa, B., Mahmoud, O., Shaban, M., & Fawzy, N. (2021). Image classification based on CNN: a survey. Journal of Cybersecurity and Information Management, 6(1), 18–50. https://doi.org/10.54216/JCIM.060102

Fachrel, J., Pravitasari, A. A., Yulita, I. N., Ardhisasmita, M. N., & Indrayatna, F. (2023). Enhancing an Imbalanced Lung Disease X-ray Image Classification with the CNN-LSTM Model. Applied Sciences, 13(14), 8227. https://doi.org/10.3390/app13148227

Food and Agriculture Organization of the United Nations. (2020).World Food and Agriculture-Statistical Yearbook 2020. Food and Agriculture Organization of the United Nations.

Gong, M. (2021). A novel performance measure for machine learning classification. International Journal of Managing Information Technology (IJMIT) Vol, 13. https://doi.org/10.5121/ijmit.2021.13101

Hassan, H., Elsayed, E., El-Raouf, A. E.-R. A., & Salman, S. N. (2019). Method validation and evaluation of household processing on reduction of pesticide residues in tomato. Journal of Consumer Protection and Food Safety, 14(1), 31–39. https://doi.org/10.1007/s00003-018-1197-2

Hendra, Sarbino, & Syahputra, E. (2021). Pengaruh Frekuensi Penyemprotan Insektisida Profenofos untuk Mengendalikan Lalat Buah Bactrocera Spp pada Tanaman Cabai. Jurnal Sains Pertanian Equator, 10(1), 1–12. http://dx.doi.org/10.26418/jspe.v10i1.43865

Ibrahim, M. S., Hamid, S. A., Muhammad, Z., Leh, N. A. M., Abdullah, S., Bakar, S. J. A., Osman, M. K., & Fadhlullah, S. Y. (2022). CNN Comparative Study for Apple Quality Classification. 2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE), 53–58. https://doi.org/10.1109/ICCSCE54767.2022.9935652

Lee, J., Ko, K., & Chung, H. (2022). Application of colorimetric sensor in monitoring dissolved CO2 in natural waters. Journal of Environmental Management, 312, 114893. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.114893

Lyu, X., Peng, W., Yu, W., Xin, Z., Niu, S., & Qu, Y. (2021). Sustainable intensification to coordinate agricultural efficiency and environmental protection: A systematic review based on metrological visualization. Journal of Land Use Science, 16(3), 313–338. https://doi.org/10.1080/1747423X.2021.1922524

Manggala, B., Chaichana, C., Syahputra, W. N. H., & Wongwilai, W. (2023). Pesticide residues detection in agricultural products: A review. Natural and Life Sciences Communications, 22(3), e2023049. https://doi.org/10.12982/NLSC.2023.049

Palakodati, S. S. S., Chirra, V. R. R., Yakobu, D., & Bulla, S. (2020). Fresh and Rotten Fruits Classification Using CNN and Transfer Learning. Rev. d’Intelligence Artif., 34(5), 617–622. https://doi.org/10.18280/ria.340512

Pratama, D., Wijaya, S., Santosa, S. A., & Tamba, S. P. (2023). Penerapan Neural Network LSTM dalam Memprediksi Sentimen Pengguna Twitter terhadap Bitcoin. Jurnal Tekinkom (Teknik Informasi Dan Komputer), 6(2), 349–354. https://doi.org/10.37600/tekinkom.v6i2.921

Putra, I. W. W. P., Setiyo, Y., Gunam, I. B. W., & Anggreni, A. A. M. D. (2021). Isolation

301and identification of profenofos pesticide degrading bacterium from soil sample of Bedugul, Indonesia. IOP Conference Series: Earth and Environmental Science,724(1). https://doi.org/10.1088/1755-1315/724/1/012037

Sanjaya, J., & Ayub, M. (2020). Augmentasi Data Pengenalan Citra Mobil Menggunakan Pendekatan Random Crop, Rotate, dan Mixup. Jurnal Teknik Informatika Dan Sistem Informasi, 6(2). https://doi.org/10.28932/jutisi.v6i2.2688

Shahid, A. H., & Singh, M. P. (2020). A deep learning approach for prediction of Parkinson’s disease progression. Biomedical Engineering Letters, 10(2), 227–239. https://doi.org/10.1007/s13534-020-00156-7

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1–48. https://doi.org/10.1186/s40537-019-0197-0

Son, T. T., Lee, C., Le-Minh, H., Aslam, N., & Dat, V. C. (2022). An enhancement for image-based malware classification using machine learning with low dimension normalized input images. Journal of Information Security and Applications, 69, 103308. https://doi.org/https://doi.org/10.1016/j.jisa.2022.103308

Suwimantara, I. M. G., Sucipta, I. N., & Tika, I. W. (2022).Hubungan antara Penggunaan Alat Pelindung Diri (APD) dengan Keluhan Petani akibat Pestisida (Studi Kasus di Subak Sri Gumana,Desa Rejasa,Kabupaten Tabanan). JURNAL BETA (BIOSISTEM DAN TEKNIK PERTANIAN), 10(1), 186–190. https://doi.org/10.24843/JBETA.2022.v10.i01.p19

Taareluan, J. A., Ngangi, J., Roring, V. I. Y., & Ogi, N. L. (2021). Toksisitas Ekstrak Daun Jarak (Ricinus communis Linnaeus) Sebagai Biopestisida Terhadap Mortalitas Hama Larva Bawang Daun(Spodoptera exigua Hubner). NUKLEUS BIOSAINS, 2(1), 1–9. https://ejurnal.unima.ac.id/index.php/nukleus-biosains/article/view/2441

Yang, H., Ni, J., Gao, J., Han, Z., & Luan, T. (2021). A novel method for peanut variety identification and classification by Improved VGG16. Scientific Reports, 11(1), 15756

Published

2026-02-03

How to Cite

Maulida, Z. H., Budisanjay, I. P. G., Utama, I. M. S., Chaicana, C., & Hadi Syahputra, W. N. (2026). Profenofos Insecticide Residue Detection on Red Chili (Capsicum annum L.) through Image Augmentation and CNN (Convolutional Neural Network). Jurnal BETA (Biosistem Dan Teknik Pertanian), 12(2), 1–9. https://doi.org/10.24843/JBETA.2024.v12.i02.p11

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 3