Accurate Analysis of Blast Disease Attack Estimation using AMultispectral Imaging Approach at Various Acquisition Heights
DOI:
https://doi.org/10.24843/JBETA.2024.v12.i02.p13Keywords:
blast intensity, estimation accuracy, multispectralAbstract
Measurement of the intensity of blast disease attack is usually done manually, so it takes a long time and accuracy in identifying. This can hamper the handling which causes the spread to be more widespread so that it risks a decrease in rice productivity, so it is necessary to develop the estimation of attack intensity through technology using multispectra l imagery. This study aims to determine the relationship between vegetation index and the intensity of rice disease attack at various heights of image acquisition and get the accuracy of estimating the intensity of rice disease attack at various heights. S amples of disease attack intensity were taken as many as 3 plots where each plot was taken 5 points diagonally with per point taken 9 clumps. Followed by acquiring images of heights of 15 meters, 30 meters, and 45 meters using a Phantom 4 drone equipped wi th a multispectral camera, after the image is obtained, continued mosaicing using Agisoft software, then normalization using Photoshop. NDVI, SAVI, CIG vegetation index analysis is carried out using QGIS 2.28. The results showed that correlation was made t o obtain the equation used for validation, and accuracy. The relationship between vegetation index and blast disease intensity at various altitudes was linearly correlated. Vegetation index NDVI 15 meters, SAVI 15 meters and 30 meters, CIG 15 meters, 30 me ters, and 45 meters were strongly correlated. Vegetation indices NDVI at 30 meters, SAVI at 45 meters were strongly correlated with disease intensity, while NDVI at 45 meters was moderately strongly correlated with disease intensity. The 15 - meter NDVI had the highest accuracy of 97.96%. Multispectral imagery with a height of 15 meters can be used to predict blast disease because it has a very strong correlation and high accuracy for estimationReferences
Aris, S., Wijaya, A., & Gunadnya, I. (2016). Kualitas Foto Udara Pada Berbagai Ketinggian. Jurnal BETA (Biosisistem dan pertanian), 4(2), 78-80.
BBPOPT. (2021). Prakiraan Serangan Blas Di Indonesia Mt 2021/2022.
BPS Provinsi Bali. (2020). Luas Lahan, Luas Lahan Panen Dan Produksi Padi Di Provinsi Bali 2020. Badan Pusat Statistik Provinsi Bali.
Basuki, K. (2019). Penginderaan Jarak Jauh. ISSN 2502-3632 (Online) ISSN 2356-0304 (Paper) Jurnal Online Internasional & Nasional Vol. 7 No.1, Januari –Juni 2019 Universitas 17 Agustus 1945 Jakarta, 53(9), 1689–1699.
Chandra,E., Wijaya,A.,& Yohanes. S. (2020). Pendugaan Intensitas Serangan Penyakit BLB (Bacterial Leaf Blight) pada Tanaman Padi melalui Pendekatan Citra Multispektral Estimation.Jurnal BETA (Biosisistem dan pertanian), 8(2), 339-345.
Direktorat Perlindungan Tanaman Pangan. (2007). Pedoman Pengamatan dan Pelaporan Perlindungan Tanaman Pangan. Jakarta.
FAO. (2022). Food Outlook. In Biannual Report on Global Food Markets. FAO. https://www.fao.org/documents/card/en/c/cb9427en
Fitasari, W., Useng, D., & Munir, A. (2017). Pendugaan Produksi Dan Indeks Vegetasi Tanaman Padi Menggunakan Data Citra Platform Unmanned Aerial Vehicle (UAV) Dan Data Citra Satelit Landsat 8. Jurnal Agritechno, 203–216.
Gitelson, A. A., Viña, A., Ciganda, V., Rundquist, D. C., & Arkebauer, T. J. (2005). Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32(8).
Hakim, A. F. 2011. Perancangan Sistem InformasiPengukuran Konduktivitas Hidraulik TidakJenuh Tanah dengan Sensor Tensiometer danHigrometer Digital. SKRIPSI-S1 JurusanTeknik Elektro Fakultas Teknik UniversitasJember.
Huete, A.R. 1988. A soil-Adjusted Vegetation Index (SAVI), Remote Sensing of Environment, 25:295-309.
Huete, A. (2011). Land Remote Sensing and Global Environmental Change: NASA’s Earth Observing System and the Science of ASTER and MODIS (Issue May 2014). https://doi.org/10.1007/978-1-4419-6749-7
Kismiantini. (2010). “Analisis Regresi.”Jurusan Pendidikan Matematika. Fakultas Matematika Dan Ilmu Pengetahuan Alam, Universitas Negeri Yogyakarta.
Nugraha, A. S. A., & Citra, I. P. A. (2021). Perbandingan Metode Soil Adjusted Vegetation Index (SAVI) dan Forest Canopy Density (FCD) untuk Identifikasi Tutupan Vegetasi (Kasus; Area Pembuatan Jalan Baru Singaraja-Mengwi). Jurnal Geografi: Media Informasi Pengembangan Dan Profesi Kegeografian, 18(1), 1–8. https://doi.org/10.15294/jg.v18i1.25367
Perlindungan, D., Pangan, T., Jenderal, D., Pangan, T., & Pertanian, K. (2018). Direktorat perlindungan tanaman pangan direktorat jenderal tanaman pangan kementerian pertanian 2018.
Prasetia, I.M.C.A., Wijaya, I.M.A.S., Gunadnya, I. B. P. (2019). Pendugaan Intensitas SeranganPenyakit Blas pada Tanaman Padi Melalui Pendekatan Citra NDVI (NormalizedDifference Vegetation Index). Jurnal BETA (Biosisistem dan pertanian), 72(3), 219-223.
Suarsana, M., Parmila, P., Wahyuni, P. S., & Suarmika, I. G. M. (2020).Pengaruh Serangan Hama Penggerek Batang dan Penyakit Tungro terhadap Produktivitas Sembilan Varietas Padi di Lokapaksa, Bali. Agro Bali: Agricultural Journal, 3(1), 84–90.
SDI, P. B. (2021). Luas Serangan Hama/Penyakit Tanaman Pangan Provinsi Bali.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
License Term
All articles published in Jurnal Beta (Biosistem dan Teknik Pertanian) are open access and licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This means that anyone is free to:
-
Share — copy and redistribute the material in any medium or format.
-
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
However, this is granted under the following conditions:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
By submitting an article to Jurnal Beta (Biosistem dan Teknik Pertanian), authors agree to the publication of their work under this open access license. The authors retain the copyright of their work, but grant Jurnal Beta (Biosistem dan Teknik Pertanian) the right of first publication.
For more information about the CC BY 4.0 license, please visit the official website: https://creativecommons.org/licenses/by/4.0/