Analisis Tingkat Akurasi Pendugaan Serangan Penyakit Blas Menggunakan Pendekatan Citra Multispektral pada Berbagai Ketinggian Akuisisi

Penulis

  • Komang Puspha Nirmalayani
  • I Made Anom Sutrisna Wijaya
  • Sumiyati Harimurti

DOI:

https://doi.org/10.24843/JBETA.2024.v12.i02.p13

Kata Kunci:

akurasi pendugaan, intesitas serangan penyakit blas, multispektral

Abstrak

Pengukuran intesitas serangan penyakit blas biasanya dilakukan secara manual, sehingga dip erlukan waktu lama dan ketelitian dalam mengidentifikasi. Hal tersebut dapat menghambat penanganan yang menyebabkan penyebaran semakin meluas sehingga beresiko terhad ap penurunan produktivitas padi , maka diperlukan pengembangan mengenai pendugaan intesitas serangan melalui teknologi dengan menggunakan citra multispektral. Penelitian ini bertujuan untuk menentukan hubungan antara indeks vegetasi dengan intensitas serangan penyakit padi pada berbagai ketinggian akuisisi citra dan mendapatkan akurasi pendugaan intensitas serangan penyakit padi pada berbagai ketinggian. Sampel intesitas serangan penyakit diambil sebanyak 3 petak dimana perpetaknya diambil 5 titik secara diagonal , setiap titik terdapat 9 rumpun. Akuisisi citra pada ketinggian 15 meter, 30 meter, dan 45 meter menggunakan d rone Phantom 4 yang dilengkapi dengan kamera multispektral . M osaiking menggunakan software Agisoft dan normalisasi menggunakan photos hop . A nalisis indeks vegetasi NDVI, SAVI, CIG menggunakan QGIS 2.28 . Hasil penelitian menunjukkan h ubungan indeks vegetasi dengan intesitas serangan penyakit blas pada berbagai ketinggian berkorelasi linier. Indeks vegetasi NDVI 15meter, SAVI 15meter dan 30meter, CIG 15meter, 30meter, dan 45meter berkorelasi sangat kuat. Indeks vegetasi NDVI 30meter, SAVI 45meter berkorelasi kuat dengan intesitas serangan penyakit , sedangkan NDVI ketinggian 45meter berkorelasi cukup kuat dengan intesitas serangan. NDVI 15meter memiliki akurasi paling tinggi sebesar 97,96 %. Citra multispektral dengan ketinggian 15meter dapat digunakan untuk menduga penyakit blas karena me miliki korel asi sangat kuat dan akurasi untuk pendugaan yang tinggi

Referensi

Aris, S., Wijaya, A., & Gunadnya, I. (2016). Kualitas Foto Udara Pada Berbagai Ketinggian. Jurnal BETA (Biosisistem dan pertanian), 4(2), 78-80.

BBPOPT. (2021). Prakiraan Serangan Blas Di Indonesia Mt 2021/2022.

BPS Provinsi Bali. (2020). Luas Lahan, Luas Lahan Panen Dan Produksi Padi Di Provinsi Bali 2020. Badan Pusat Statistik Provinsi Bali.

Basuki, K. (2019). Penginderaan Jarak Jauh. ISSN 2502-3632 (Online) ISSN 2356-0304 (Paper) Jurnal Online Internasional & Nasional Vol. 7 No.1, Januari –Juni 2019 Universitas 17 Agustus 1945 Jakarta, 53(9), 1689–1699.

Chandra,E., Wijaya,A.,& Yohanes. S. (2020). Pendugaan Intensitas Serangan Penyakit BLB (Bacterial Leaf Blight) pada Tanaman Padi melalui Pendekatan Citra Multispektral Estimation.Jurnal BETA (Biosisistem dan pertanian), 8(2), 339-345.

Direktorat Perlindungan Tanaman Pangan. (2007). Pedoman Pengamatan dan Pelaporan Perlindungan Tanaman Pangan. Jakarta.

FAO. (2022). Food Outlook. In Biannual Report on Global Food Markets. FAO. https://www.fao.org/documents/card/en/c/cb9427en

Fitasari, W., Useng, D., & Munir, A. (2017). Pendugaan Produksi Dan Indeks Vegetasi Tanaman Padi Menggunakan Data Citra Platform Unmanned Aerial Vehicle (UAV) Dan Data Citra Satelit Landsat 8. Jurnal Agritechno, 203–216.

Gitelson, A. A., Viña, A., Ciganda, V., Rundquist, D. C., & Arkebauer, T. J. (2005). Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32(8).

Hakim, A. F. 2011. Perancangan Sistem InformasiPengukuran Konduktivitas Hidraulik TidakJenuh Tanah dengan Sensor Tensiometer danHigrometer Digital. SKRIPSI-S1 JurusanTeknik Elektro Fakultas Teknik UniversitasJember.

Huete, A.R. 1988. A soil-Adjusted Vegetation Index (SAVI), Remote Sensing of Environment, 25:295-309.

Huete, A. (2011). Land Remote Sensing and Global Environmental Change: NASA’s Earth Observing System and the Science of ASTER and MODIS (Issue May 2014). https://doi.org/10.1007/978-1-4419-6749-7

Kismiantini. (2010). “Analisis Regresi.”Jurusan Pendidikan Matematika. Fakultas Matematika Dan Ilmu Pengetahuan Alam, Universitas Negeri Yogyakarta.

Nugraha, A. S. A., & Citra, I. P. A. (2021). Perbandingan Metode Soil Adjusted Vegetation Index (SAVI) dan Forest Canopy Density (FCD) untuk Identifikasi Tutupan Vegetasi (Kasus; Area Pembuatan Jalan Baru Singaraja-Mengwi). Jurnal Geografi: Media Informasi Pengembangan Dan Profesi Kegeografian, 18(1), 1–8. https://doi.org/10.15294/jg.v18i1.25367

Perlindungan, D., Pangan, T., Jenderal, D., Pangan, T., & Pertanian, K. (2018). Direktorat perlindungan tanaman pangan direktorat jenderal tanaman pangan kementerian pertanian 2018.

Prasetia, I.M.C.A., Wijaya, I.M.A.S., Gunadnya, I. B. P. (2019). Pendugaan Intensitas SeranganPenyakit Blas pada Tanaman Padi Melalui Pendekatan Citra NDVI (NormalizedDifference Vegetation Index). Jurnal BETA (Biosisistem dan pertanian), 72(3), 219-223.

Suarsana, M., Parmila, P., Wahyuni, P. S., & Suarmika, I. G. M. (2020).Pengaruh Serangan Hama Penggerek Batang dan Penyakit Tungro terhadap Produktivitas Sembilan Varietas Padi di Lokapaksa, Bali. Agro Bali: Agricultural Journal, 3(1), 84–90.

SDI, P. B. (2021). Luas Serangan Hama/Penyakit Tanaman Pangan Provinsi Bali.

Unduhan

Diterbitkan

2026-02-03

Cara Mengutip

Nirmalayani, K. P., Sutrisna Wijaya, I. M. A., & Harimurti, S. (2026). Analisis Tingkat Akurasi Pendugaan Serangan Penyakit Blas Menggunakan Pendekatan Citra Multispektral pada Berbagai Ketinggian Akuisisi. Jurnal BETA (Biosistem Dan Teknik Pertanian), 12(2), 1–8. https://doi.org/10.24843/JBETA.2024.v12.i02.p13

Terbitan

Bagian

Articles