Aerial Photo Quality on various altitude
DOI:
https://doi.org/10.24843/j.beta.2016.v04.i02.p07Keywords:
acquisition, altitude, detail, aerial photograpyAbstract
The aim of this research is to find aerial photoraphy acquisition altitude with the best quality image The acquisition of aerial photography done by drones. Altitude of aerial photography acquisition were 10m, 20m and 30m. aerial photos taken a image of ciherang rice varieties with the age of 100 days after planting. Detailed analysis of aerial photography was done by zooming and image binary. Zooming process was used Adobe Photoshop CS6 software. binary imagery process was used MatLab Software 2013 software. 10m acquisition altitudehas the best quality of detail.
References
Bhaskara Putra.I.M.A.2015. Pendugaan Hasil Panen Padi Menggunakan Analisis Image Processing (Skripsi). Universitas Udayana, Jimbaran.
Bhaskara Putra.I.M.A. Wijaya, A.,S. Yohanes Setiyo. 2015. Pengembangan Algoritma Image Processing Untuk Menduga Hasil Panen Padi. Ojs.unud.ac.id. Universitas Udayana. Jimbaran.
Fokus Nusantara. 2013. Memahami Esensi Pencahayaan Dalam Fotograpi. http://www.focusnusantara.com/article/artikel_fotografi/memahami_esensi_pencahayaan_dalam_fotografi.html. tanggal akses (10 Oktober 2016).
Fukagawa, T., K. Ishii, N. Noguchi and H. Terao. 2003. Detecting crop growth by a multispectral imaging sensor. ASAE Annual Meeting. Las Vegas, NV.
Gusa R.F. 2013. Pengolahan Citra Digital untuk Menghitung Luas Daerah Bekas Penambangan Timah. Jurnal ilmiah Vol: 2 No 2 September 2013 Universitas Bangka Belitung.
Huang, Y.B., S.J., Thomson, W.C., Hoffmann, Y.B., Lan, B.K., Fritz, 2013. Development and prospect of unmanned aerial vehicle technologies for agricultural production management. Int J Agric & Biol Eng 6(3): 1-10.
Unal, I., M., Topakcı, M., Canakci, D., Karayel, O., Kabas,2013. Determination of stubble density with the image processing method by using an autonomous robot, 9 th European Conference on Precision Agriculture, 7-11
July 2013, Lleida, Spain. Lelong, C.D., P., Burger, G., Jubelin, B., Roux, S., Labbe, F., Baret, 2008. Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots. Sensors. 8: 3557-3585.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
License Term
All articles published in Jurnal Beta (Biosistem dan Teknik Pertanian) are open access and licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This means that anyone is free to:
-
Share — copy and redistribute the material in any medium or format.
-
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
However, this is granted under the following conditions:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
By submitting an article to Jurnal Beta (Biosistem dan Teknik Pertanian), authors agree to the publication of their work under this open access license. The authors retain the copyright of their work, but grant Jurnal Beta (Biosistem dan Teknik Pertanian) the right of first publication.
For more information about the CC BY 4.0 license, please visit the official website: https://creativecommons.org/licenses/by/4.0/