Dinamic Temperature of Organic Household Garbage Composting using Bio Composter Basket
DOI:
https://doi.org/10.24843/JBETA.2019.v07.i18.Keywords:
household organic waste, rice hulls, temperature, bio composter basketAbstract
The objective of this study was to find the content of macro nutrients and micro household waste which is varied with rice hulls in bio composter or bioreactor garden bag. The windrow system composting method was used in this study. Household organic waste material act ed as a source of nitrogen and rice hulls as a carbon source or as a bulking agent so that C: N ratio of material meets the composting requirements. Analysis results of several parameters of household organic waste material and rice hulls i.e.moisture content (%): 76. 29 and 9.48, organic matter (%): 98.17 and 77.92, pH: 4.32 and 6.56, Salinity (mS / cm):4.03 and 0.21, C: N ratio: 15.72 and 112.57, total N (%): 0.87 and 3.81, fat content (% BB): 13.27 and 9.48, vitamin C (mg /100 g):65.11 and 92.99 for each ingredient respectively. Analysis of macro and micro nutrient parameters of organic household waste and rice husk material showed that each material was suitable for composting. The temperature observed from day 2 to day 14. Thermophilic phase was achieved on the 2nd day of com posting which the temperature reached 43 OC after the acclimation process. The 55 OC of optimum temperature achieved ed on the day 9 ~10 of composting and then decreased the temperature over the next day, the observations made for 14 days to see the dynamics of temperature changes from the thermophilic stage to the mesophilic stageReferences
Djuarnani, Kristian, dan Setiawan, 2005, Cara Cepat Membuat Kompos, Agromedia Pustaka, Jakarta.
Eriksen, G.N.,F.J.Coale,and G.A. Bollero.1999. Soil Nitrogen Dynamics and Maize Production in Municipal Solid Waste Amended Soil. Agron.J.91:1009-1016
Horisawa, S., Sakuma,Y., Tamai, Y., Doi, Shuichi and Terasawa, M. 2001. Effect of environmental temperature on a small-scale biodegradation system for organic solid waste. The Japan wood Research Society 47:154-158.
Madrini, B., Shibusawa, S., Kojima, Y., and Hosaka, S. 2016. Effect of natural zeolite (clinoptilolite) on ammonia emission of leftover food-rice hulls composting at the initial stage of the thermophilic process.
Pascual, J.A., Garcia, C., Hernandez, T., 1999. Comparison of fresh and composted organic waste in their efficacy for the improvement of arid soil quality. Bioresource Technology. 68, 244-264.
Suller, D.J and Finstein, M.S. 1977. Effect of temperature, aeration and moisture on CO2 formation in bench-scale, continuously thermophilic composting of solid waste. Appl Environ Microbiol 33:345-350.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
License Term
All articles published in Jurnal Beta (Biosistem dan Teknik Pertanian) are open access and licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This means that anyone is free to:
-
Share — copy and redistribute the material in any medium or format.
-
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
However, this is granted under the following conditions:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
By submitting an article to Jurnal Beta (Biosistem dan Teknik Pertanian), authors agree to the publication of their work under this open access license. The authors retain the copyright of their work, but grant Jurnal Beta (Biosistem dan Teknik Pertanian) the right of first publication.
For more information about the CC BY 4.0 license, please visit the official website: https://creativecommons.org/licenses/by/4.0/