Evaluasi Konduktivitas Listrik Tanah dan Kaitannya dengan pH, Nitrogen Total, Karbon Total dan Bahan Organik di Lahan Sawah
Keywords:
Bahan organik tanah, Karbon total, Konduktivitas listrik, Nitrogen total, pH tanahAbstract
Ketidakseimbangan unsur hara dan kualitas tanah yang kurang optimal merupakan permasalahan umum di lahan pertanian, namun pemantauan unsur hara memerlukan analisis laboratorium. Tujuan penelitian adalah memperoleh hubungan untuk mengestimasi pH tanah, kandungan nitrogen total, karbon total dan bahan organik tanah berdasarkan konduktivitas listrik tanah, serta mengevaluasi potensi penggunaan konduktivitas listrik tanah sebagai indikator estimasi parameter-parameter tersebut. Penelitian menggunakan machine learning berbasis Python dengan algoritma regresi linear, di mana 70% data digunakan untuk membuat persamaan pendugaan dan 30% untuk validasi kinerja model. Hasil penelitian menunjukkan bahwa konduktivitas Listrik (EC) dapat digunakan untuk memprediksi nilai pH dengan persamaan pH = 0,3107 EC - 1,2 (nilai R² = 0,9707), untuk memprediksi nilai karbon total dengan persamaan TC = 0,3525 EC - 0,1 dan untuk memprediksi nilai bahan organik, dengan persamaan BOT = 0,2045 EC - 0,1 dengan nilai R² = 0,9126. Namun, nilai EC dinyatakan lemah untuk memprediksi nitrogen total dengan nilai R² = -0,0030. Validasi kinerja model menunjukkan nilai kesalahan yang sangat kecil pada persamaan untuk memprediksi pH berdasarkan nilai EC yaitu MSE = 0,0006; MAE = 0,0164), serta pada persamaan untuk memprediksi karbon total dan bahan organik tanah berdasarkan nilai EC diperoleh masing-masing nilai MSE = 0,0017 dan MAE = 0,0357). Namun nilai EC kurang efektif untuk memprediksi nilai nitrogen total karena hasil validasi kinerja model menunjukkan nilai MSE = 0,0195 dan MAE = 0,1190. Hasil ini menunjukkan bahwa konduktivitas listrik tanah dapat digunakan sebagai indikator yang baik untuk mengestimasi pH tanah, karbon total, dan bahan organik tanah.
The imbalance of soil nutrients and suboptimal soil quality are common issues in agricultural land; however, monitoring soil nutrients typically requires laboratory analysis. This study aims to establish relationships for estimating soil pH, total nitrogen content, total carbon, and soil organic matter based on soil electrical conductivity (EC), as well as to evaluate the potential use of EC as an indicator for estimating these parameters. The research employed a machine learning approach using Python with a linear regression algorithm, where 70% of the data was used to develop estimation equations and the remaining 30% for model performance validation. The results indicate that EC can be used to predict pH with the equation pH = 0.3107 EC - 1.2 (R² = 0.9707), total carbon with the equation TC = 0.3525 EC - 0.1, and soil organic matter with the equation BOT = 0.2045 EC - 0.1 (R² = 0.9126). However, EC was found to be a weak predictor for total nitrogen, as indicated by an R² value of -0.0030. Model validation results showed very low error values for the pH prediction equation (MSE = 0.0006; MAE = 0.0164), as well as for the equations predicting total carbon and organic matter (MSE = 0.0017 and MAE = 0.0357, respectively). In contrast, EC was less effective in predicting total nitrogen, as reflected in higher error values (MSE = 0.0195; MAE = 0.1190). These findings suggest that soil electrical conductivity can serve as a reliable indicator for estimating soil pH, total carbon, and organic matter content.
References
Adamchuck, V. I. (2004). On-the-go soil sensor for precision agriculture. Computers and Electronics in Agriculture, 44, 71–91. https://doi.org/10.1016/j.compag.2004.03.002.
Afianto, L. S. H. (2018). Evaluasi kandungan nitrogen tanah lahan jati (Tectona grandis Linn.f) dengan berbagai umur kelas tegakan [Skripsi].
Atmojo, S. W. (2003). Peranan Bahan Organik Terhadap Kesuburan Tanah Dan Upaya Pengelolaannya. 12-13.
Bardgett, R. (2008). The biology of soil : a community and ecosystem approach. Oxford University Press.
Bi, Q., Goodman, K. E., Kaminsky, J., & Lessler, J. (2019). What is machine learning? A primer for the epidemiologist. American Journal of Epidemiology, 2222. https://doi.org/10.1093/aje/kwz189
Bot, A., & Benites, J. (2005). The Importance of Soil Organic Matter. In Soil (Vol. 1, Issue 2). FAO Soils Bulletin 80. https://doi.org/10.5194/soil-1-707-2015
Chan, Y. (2008). Increasing soil organic carbon of agricultural land. Carbon, JANUARY.
Cherkasov, N., Ibhadon, A. O., & Fitzpatrick, P. (2015). A review of the existing and alternative methods for greener nitrogen fixation. Chemical Engineering and Processing: Process Intensification, 90, 24–33. https://doi.org/10.1016/j.cep.2015.02.004
Corwin, D. L., & Lesch, S. M. (2005a). Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, 46, 11–43.
Corwin, D. L., & Lesch, S. M. (2005b). Characterizing soil spatial variability with apparent soil electrical conductivity: I. Survey protocols. Computers and Electronics in Agriculture, 46, 103–133.
Dahal, N., & Bajracharya, R. M. (2010). Prospects of Soil Organic Carbon
Dwiastuti, S., Maridi, Suwarno, & Puspitasari, D. (2016). Bahan organik tanah di lahan marjinal dan faktor-faktor yang mempengaruhinya. Proceeding Biology Education Conference, 13(1), 748-751.
Dwiastuti, S., Maridi, Suwarno, & Puspitasari, D. (2016). Bahan Organik Tanah di Lahan Marjinal dan Faktor-Faktor yang Mempengaruhinya. Proceeding Biology Education Conference, 13(1), 748–751.
Eigenberg, R. A., Doran, J. W., Nienaber, J. A., & Woodbury, B. L. (2002). Electrical conductivity monitoring of soil condition and available N with animal manure and a cover crop. Agriculture, Ecosystems & Environment, 88(2), 183–193. https://doi.org/10.1016/S0167-8809(01)00256-0
Ermiana, R., Suhendrayatna, & Sugianto. (2021). Identifikasi salinitas tanah menggunakan instrumen induksi elektromagentik EM38 di Kecamatan Baitussalam Kabupaten Aceh Besar. Jurnal IPA dan Pembelajaran IPA, 5(4), 293-304. https://doi.org/10.24815/jipi.v5i4.23246
FAO. (2004). Carbon sequestration in dryland soils. World Soil Resources Reports 102. Rome. Food and Agriculture Organization of the United Nations (FAO).
Foth, H. . (1998). Dasar-dasar Ilmu tanah. Gadjah Mada University Press. Yogyakarta 782 P.
Ghazali, I. (2016). Aplikasi analisis multivariate dengan program IBM SPSS 23 (8th ed.). Badan Penerbit Universitas Diponegoro
Gujarati, D. N., & Porter, D. C. (2009). Basic econometrics (5th ed.). McGraw-Hill Education.
Hanafiah, K.A, Anas, I, Napoleon, A, Ghoffar, & N. (2005). Biologi Tanah.Ekologi dan MakrobiologiTanah. Jakarta: PT Raja Grafindo Persada.
Handayanto, & Hairiah, K. (2007). Biologi Tanah. Yogyakarta. Pustaka Adipura.
Hardjowigeno, S. (2003). Ilmu Tanah Ultisol. Edisi Baru Akademia Pressindo, Jakarta.
Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685–695. https://doi.org/10.1007/s12525-021-00475-2
Jaya, G. I., Avianto, Y., Handru, A., & Novyanto, A. (2024). Hubungan antara respirasi tanah dengan sifat tanah dibawah kondisi tegakan vegetasi yang berbeda di Ungaran, Jawa Tengah. Agroista: Jurnal Agroteknologi, 8(1), 11-19. //doi.org/10.55180/agi.v8i1.1213
Lumban Toruan, P., Margareta, B., Jumarni, A., Pratiwi, S. S., & Atina. (2023). Pengaruh temperatur air terhadap konduktivitas dan total dissolved solid. Jurnal Kumparan Fisika, 6(1), 11-16. //doi.org/10.33369/jkf.6.1.11-16
Mautuka, Z. A., Maifa, A., & Karbeka, M. (2022). Pemanfaatan biochar tongkol jagung guna perbaikan sifat kimia tanah lahan kering. Jurnal Ilmiah Wahana Pendidikan, 8(1).
Mbulu, B. C. P., Redationo, N. T., & Herwinsha, F. V. (2023). Calculation analysis of heat conductivity and average heat rate in carbon composites. Jurnal Metal, 1, 17-24.
Mueller, T. G., Pusuluri, N. B., Mathias, K. K., Cornelius, P. L., Barnhisel, R. I., & Shearer, S. A. (2003). Soil electrical conductivity map variability in limestone soils overlain by loess. Agronomy Journal, 96, 496–507.
Muliawana, N. R. E., Sampurno, J., & Jumarang, M. I. (2016). Identifikasi nilai salinitas pada lahan pertanian di daerah Jungkat berdasarkan metode daya hantar listrik (DHL). Jurnal Prisma Fisika, 4(2), 69-72.
Nangaro, R. A., Tamod, Z. E., & Titah, T. Analisis kandungan bahan organik tanah di kebun tradisional Desa Sereh Kabupaten Kepulauan Talaud.
Patti, P. S., Kaya, E., & Silahooy, Ch. (2013). Analisis status nitrogen tanah dalam kaitannya dengan serapan N oleh tanaman padi sawah di Desa Waimital, Kecamatan Kairatu, Kabupaten Seram Bagian Barat. Jurnal Agrologia, 2(1), 51-58.
Priyonggo, B., Azadi, A., Hafidz, M., Wirawan, A., Ummah, N., Rahayu, D., & Mufidah, Z. (2023). Kalibrasi silang pengukur EC tanah (RS-485) dengan WET-2 sensor di Rumpin, Bogor. Sultra Journal of Mechanical Engineering, 2(2), 100-106.
Rhoades, J. D., & van Schilfgaarde, J. (1976). An electrical conductivity probe for determining soil salinity. Soil Science Society of America Journal, 40(5), 647–651. https://doi.org/10.2136/sssaj1976.03615995004000050016x
Rhoades, J. D., Manteghi, N. A., Shouse, P. J., & Alves, W. J. (1989). Soil electrical conductivity and soil salinity: New formulations and calibrations. Soil Science Society of America Journal, 53(2), 433–439. https://doi.org/10.2136/sssaj1989.03615995005300020020x
Rina. (2015). Manfaat Unsur N, P, dan K Bagi Tanaman.
Robert, M. (2001). Soil carbon sequestration for improved land management. In World Soil Resources Reports.
Roihan, A., Sunarya, P. A., & Rafika, A. S. (2020). Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper. IJCIT (Indonesian Journal on Computer and Information Technology), 5(1). https://doi.org/10.31294/ijcit.v5i1.7951
Sabaruddin, Fitri, S. N. A., & Lestari, L. (2009). Hubungan antara kandungan bahan organik tanah dengan periode pasca tebang tanaman HTI Acacia Mangium Willd. Jurnal Jurusan Tanah Fakultas Pertanian Universitas Sriwijaya, 14(2), 105-110.
Santoso, S. (2017). Menguasai statistik multivariat dengan SPSS. Elex Media Komputindo.
Sapalina, F., Noviandi Ginting, E., & Hidayat, F. (2022). Bakteri Penambat Nitrogen Sebagai Agen Biofertilizer. WARTA Pusat Penelitian Kelapa Sawit, 27(1), 41–50. https://doi.org/10.22302/iopri.war.warta.v27i1.80
Sari, M. A. W., Ivansyah, O., & Nurhasanah. (2019). Hubungan konduktivitas listrik tanah dengan unsur hara NPK dan pH pada lahan pertanian gambut. Jurnal Prisma Fisika, 7(2), 55-62.
Sari, S. M., Kumolontang, W. J. N., & Warouw, V. R. Ch. (2021). Analisis kadar hara nitrogen total pada tanah sawah di Tapadaka Kecamatan Dumoga Tenggara Kabupaten Bolaang Mongondow, 29-32.
Setyaningrum, D., Kasanah, U., & Anisa, Z. (2024). Analisis Ph dan kadar nitrogen total menggunakan metode Kjeldah pada pupuk organik padat. CHEMVIRO: Jurnal Kimia dan Ilmu Lingkungan, 2(2), 123-128.
Shi, R., Zhang, X., Waterhouse, G. I. N., Z., & Zhang, T. (2020). The Journey toward Low Temperature , Low Pressure Catalytic Nitrogen Fixation. Advanced Energy Materials, 2000659, 1–10. https://doi.org/https://doi.org/10.1002/aenm.202000659
Solekhah, B. A., Priyadarshini, R., & Maroeto. (2024). Kajian pola distribusi tekstur terhadap bahan organik pada berbagai penggunaan lahan. Agro Bali: Agricultural Journal, 7(1), 256-265.
Soumare, A., Diedhiou, A. G., Thuita, M., & Hafidi, M. (2020). Exploiting Biological Nitrogen Fixation : A Route. Plants, 1–22.
Suryani, I. (2021). Perubahan konduktivitas hidraulik dan daya hantar listrik tanah akibat pemberian urea dan bahan organik pada tanah Ultisol. Jurnal Galung Tropika, 10(3), 283-291.
Suud, H. M., Kusbiantoro, D. E., Rosyady, M. G., & Farisi, O. A. (2022). Jurnal review: Efektivitas pengukuran konduktivitas listrik tanah untuk menduga kondisi kesuburan tanah pada lahan pertanian. Jurnal Ilmiah Hijau Cendekia, 7(2), 71-77.
Tangkatesik, A., Wikarniti, N. M., Soniari, N. N., & Narka, I. W. (2012). Kadar Bahan Organik Tanah pada Tanah Sawah dan Tegalan di Bali serta Hubungannya dengan Tekstur Tanah. Agrotrop, 2(2),101107.http://repositori.unud.ac.id/upload/repositori/ID1_19611122198601100130091311906agustina.pdf
Widiasmadi, N. (2020). Analisa EC dan keasaman tanah menggunakan Smart Biosoildam sebagai usaha peningkatan daya dukung lahan pasir. Syntax Literate: Jurnal Ilmiah Indonesia, 5(11), 1358–1370. https://doi.org/10.36418/syntax-literate.v5i11.1647
Zulfadli, Muyassir, & Fikrinda. (2012). Sifat Tanah Terkompaksi Akibat Pemberian Cacing Tanah Dan Bahan Organik. Jurnal. Dinas Kehutanan Dan Perkebunan.
Downloads
Published
How to Cite
Issue
Section
License
License Term
All articles published in Jurnal Beta (Biosistem dan Teknik Pertanian) are open access and licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This means that anyone is free to:
-
Share — copy and redistribute the material in any medium or format.
-
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
However, this is granted under the following conditions:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
By submitting an article to Jurnal Beta (Biosistem dan Teknik Pertanian), authors agree to the publication of their work under this open access license. The authors retain the copyright of their work, but grant Jurnal Beta (Biosistem dan Teknik Pertanian) the right of first publication.
For more information about the CC BY 4.0 license, please visit the official website: https://creativecommons.org/licenses/by/4.0/