The Development of Greenhouse Air Humidity Control System Using PWM (Pulse Width Modulation)

Authors

  • Wily Goldramijaya Program Studi Teknik Pertanian dan Biosistem, Fakultas Teknologi Pertanian, Universitas Udayana, Badung, Bali, Indonesia
  • Ni Nyoman Sulastri Program Studi Teknik Pertanian dan Biosistem, Fakultas Teknologi Pertanian, Universitas Udayana, Badung, Bali, Indonesia
  • I Made Anom S. Wijaya Program Studi Teknik Pertanian dan Biosistem, Fakultas Teknologi Pertanian, Universitas Udayana, Badung, Bali, Indonesia
  • I Putu Gede Budisanjaya Program Studi Teknik Pertanian dan Biosistem, Fakultas Teknologi Pertanian, Universitas Udayana, Badung, Bali, Indonesia

DOI:

https://doi.org/10.24843/JBETA.2023.v11.i01.p17

Keywords:

pulse width modulation, air humidity, microgreen, greenhouse, arduino

Abstract

Control systems are widely applied in agriculture, such as using microcontrollers to control humidity in greenhouses. Lack of accuracy in conditioning the humidity in indoor farming affects plant growth and productivity, especially in microgreens. The humidity of the planting media indirectly affects the air humidity through evaporation. Therefore, a system is required to control and monitor air and planting media humidity. The purpose of this study was to design and build an air humidity control system using PWM (Pulse Width Modulation) in a greenhouse equipped with a monitoring and automatic irrigation system. The system control employed Arduino UNO ATmega328P as a microcontroller connected to the DHT22 sensor as an air humidity sensor, a capacitive soil moisture sensor as a humidity sensor for the planting media, relay to control misting and irrigation pump. The microcontroller was also connected to a driver as a DC fan control with PWM control, four DC fan as airflow suppliers and dehumidifiers, and LCD 16x2 as a monitoring system. The system used the air humidity setting points for microgreens which were entered manually through coding. The result of this research was a lean-to greenhouse prototype with a DHT22 sensor with air humidity error values of DHT22(1) 3.09% and DHT22(2) 3.34%. The system successfully read and displayed data and provided output with a response time of irrigation and misting systems of 78mS and 145mS, using a delay of 2 seconds. The PWM control of the DC fan was able to reduce and maintain the air humidity within the optimum range for microgreen growth by increasing as well as decreasing the DC fans’ RPM, which was based on its duty cycle value

References

Alahudin, M. (2013). Kondisi Termal Bangunan Greenhouse dan Screen House pada Fakultas Pertanian Universitas Musamus Merauke. Jurnal Ilmiah Mustek Anim Ha, 2(1), 16–27.

Anonim. (2017). Microgreens Production. Johnny’sSelected Seeds, 1–3. http://www.johnnyseeds.com/growers- library/micro-greens-production.html

Apriast, P., Sudana, I., & Sudarma, I. (2015). Hubungan Sifat Fisika dan Kimia Tanah dengan Persentase Penyakit Layu pada Tanaman Cengkeh (Syzygium Aromaticum L.) yang Disebabkan oleh Jamur Akar Putih (Rigidoporus Sp.) di Desa Unggahan, Kabupaten Buleleng. E-Jurnal Agroekoteknologi Tropika (Journal of Tropical Agroecotechnology), 4(1), 25–32.

Arifin, S., & Fathoni, A. (2014). Pemanfaatan Pulse Width Modulation Untuk Mengontrol Motor (Studi Kasus Robot Otomatis Dua Deviana). Jurnal Ilmiah Teknologi Informasi Asia, 8(2), 65–80.

As’adiya, L., & Murwani, I. (2021). Pengaruh Lama Penyinaran Lampu Led Merah, Biru, Kuning Terhadap Pertumbuhan Microgreen Kangkung (Ipomoea Reptant). Folium : Jurnal Ilmu Pertanian, 5(1), 14. https://doi.org/10.33474/folium.v5i1.10358

Buffington, D E, Bucklin, R. A., Henley, R. W., & Mcconnell, D. B. (2019). Greenhouse Ventilation. U.S. Department of Agriculture, UF/IFAS Extension Service, University of Florida, IFAS, 1–4. https://edis.ifas.ufl.edu/ae030

Ferry. (2019). Response Time Testing. https://sis.binus.ac.id/2019/05/13/response- time-testing/. Diakses 20 Juli 2022.

Frey, N. (2020). Air Changes Per Hour: The What, Why, & How Answered. https://www.vaniman.com/air-changes-per-

hour-the-what-why-how-answered/. Diakses 22 Februari 2022.

Ginting, V. br, Perangin-angin, B., & Tamba, T. (2014). Sistem Pengendalian Asap Rokok Multikanal dengan Menggunakan Pwm Berbasis Mikrokontroler Atmega 8. FISIKA FMIPA USU, 6, 58–66.

Grooms, D. (2020). Microgreens: Market Analysis, Growing Methods and Models. MSc Thesis; California State University, Na, 1–24.

Hutabarat, T. M. R. (2018). Analisis Pengaruh Penambahan Jumlah Gain pada Rancangan Pengendali Adaptif Metode Mrac Diuji pada Sistem Orde Dua. Universitas Islam Negeri Sultan Syarif Kasim Riau.

Indriani, A., Witanto, Y., Supriadi, & Hendra. (2017). Sistem Kontrol Kekeruhan dan Temperatur Air Laut Menggunakan

Microcontroller Arduino Mega. Jurnal Teknik Mesin Mercu Buana, 6(3), 158–163.

Juditova. (2021). How to Drive a DC Motor with a BJT Transistor. https://www.techzorro.com/en/blog/how-to- drive-a-dc-motor-with-a-bjt-transistor/. Diakses 7 Juli 2022.

Karsid, K., Ramadhan, A. W., & Aziz, R. (2018). Perbandingan Kinerja Mesin Penetas Telur Otomatis dengan Menggunakan Kontrol On- Off dan Kontrol PWM. Matrix : Jurnal Manajemen Teknologi Dan Informatika, 8(1),

1–5. https://doi.org/10.31940/matrix.v8i1.733

Megido, A., & Ariyanto, E. (2016). Sistem Kontrol Suhu Air Menggunakan Pengendali PID dan Volume Air pada Tangki Pemanas Air Berbasis Arduino Uno. Gema Teknologi, 18(4), 21. https://doi.org/10.14710/gt.v18i4.21912

Nolan, D. A. (2018). Effects of Seed Density and Other Factors on the Yield of Microgreens Grown Hydroponically on Burlap.

Nurnasari, E., & Djumali. (2016). Pengaruh Kondisi Ketinggian Tempat Terhadap Produksi dan Mutu Tembakau Temanggung. Buletin Tanaman Tembakau, Serat & Minyak Industri, 2(2), 45. https://doi.org/10.21082/bultas.v2n2.2010.45-59

Renna, M., Di Gioia, F., Leoni, B., Mininni, C., & Santamaria, P. (2017). Culinary Assessment of Self-Produced Microgreens as Basic Ingredients in Sweet and Savory Dishes. Journal of Culinary Science and Technology, 15(2), 126–142. https://doi.org/10.1080/15428052.2016.1225534

Ripai, A., & Wibowo, A. (2016). Obstacle Avoider Prototype Robot Using After Market Component. Swabumi, IV(2), 129–140.

Sari, F. Y. (2013). Analisa Steady State Error Sistem Kontrol Linier Invariant Waktu. Jurnal Matematika UNAND, 2(3), 91.

https://doi.org/10.25077/jmu.2.3.91-97.2013

Sonjaya Suhendar, W., & Koswara, E. (2020). Analisis Pengaruh Duty Cycle dan Frekuensi terhadap Kecepatan Motor Listrik. Computer Vision: Principles, Algorithms, Applications, Learning: Fifth Edition, 103, 1–858.

Yudaningtyas, E. (2017). Belajar Sistem Kontrol: Soal dan Pembahasan. UB Express.

Published

2026-02-06

How to Cite

Goldramijaya, W., Sulastri, N. N., Wijaya, I. M. A. S., & Budisanjaya, I. P. G. (2026). The Development of Greenhouse Air Humidity Control System Using PWM (Pulse Width Modulation). Jurnal BETA (Biosistem Dan Teknik Pertanian), 11(1), 168–180. https://doi.org/10.24843/JBETA.2023.v11.i01.p17

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>