Naskah ini versi lama yang diterbitkan pada 2025-09-30. Baca versi terbaru.

Estimasi Nilai Respirasi Tanah Menggunakan Metode Tabung Mikrorespirasi dengan Pengolahan Citra

Estimation of Soil Respiration based on Microrespiration Tube Method using Image Processing

Penulis

  • Ni Luh Gede Enjelina Ayu Maheswari Program Studi Teknik Pertanian dan Biosistem, Fakultas Teknologi Pertanian, Universitas Udayana, Badung, Bali, Indonesia
  • Ni Nyoman Sulastri Program Studi Teknik Pertanian dan Biosistem, Fakultas Teknologi Pertanian, Universitas Udayana, Badung, Bali, Indonesia
  • I Putu Gede Budisanjaya Program Studi Teknik Pertanian dan Biosistem, Fakultas Teknologi Pertanian, Universitas Udayana, Badung, Bali, Indonesia
  • I Gusti Ketut Arya Arthawan Program Studi Teknik Pertanian dan Biosistem, Fakultas Teknologi Pertanian, Universitas Udayana, Badung, Bali, Indonesia

DOI:

https://doi.org/10.24843/j.beta.2025.v13.i02.p01

Kata Kunci:

Back Propagation, Multiple Linear Regression, Image Processing, Random Forest, Soil Respiration

Abstrak

Soil respiration is one of the important indicators in a soil ecosystem, reflecting the activity of microorganisms and soil metabolism. Soil respiration is measured using the microrespiration tube method as a field measurement and acid-base titration as a laboratory analysis. This microrespiration tube method is a quick way to measure soil respiration, but the resulting data can only be seen visually and its value is unknown. Therefore, image processing from this microrespiration tube method was carried out to estimate soil respiration values and determine the best estimation model using machine learning. Images were acquired and then processed with image processing including conversion Red, Green, Blue (RGB) to Hue Saturation Value (HSV), image augmentation, and feature extraction from the image data. The soil respiration estimation model was developed using three algorithms: Multiple Linear Regression (MLR), Back Propagation (BP), and Random Forest (RF). The results showed model accuracy with R² values of 0.28 for MLR, 0.53 for BP, and 0.77 for RF and soil respiration estimation of 7.62 mg/g for MLR, 4.38 mg/g for BP, and 4.57 mg/g for RF. Based on these results, it is concluded that the RF algorithm is the best model for estimating soil respiration values.

Referensi

Anderson, J. P. E. (1982). Soil respiration. In Agronomy Monographs (1st ed., Vol. 9, pp. 831–833). Wiley. https://doi.org/10.2134/agronmonogr9.2.2ed.c41

Apriliani, L. M. P., Sulastri, N. N., Widia, I. W., & Budisanjaya, I. P. G. (2024). Estimasi evapotranspirasi potensial menggunakan algoritma random forest di daerah Irigasi Tungkub, Bali. JURNAL BETA (BIOSISTEM DAN TEKNIK PERTANIAN, 12(02), 198.

Bi, Q., Goodman, K. E., Kaminsky, J., & Lessler, J. (2019). What is machine learning? A primer for the epidemiologist. American Journal of Epidemiology, 2222. https://doi.org/10.1093/aje/kwz189

Chairi, A., & Mukhaiyar, R. (2023). Sistem kontrol color sorting machine dengan pengolahan citra digital. JTEIN: Jurnal Teknik Elektro Indonesia, 4(1), 387–396. https://doi.org/10.24036/jtein.v4i1.393

Ciputra, A., Setiadi, D. R. I. M., Rachmawanto, E. H., & Susanto, A. (2018). Klasifikasi tingkat kematangan buah Apel manalagi dengan algoritma naive bayes dan ekstraksi fitur citra digital. Simetris: Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 9(1), 465–472. https://doi.org/10.24176/simet.v9i1.2000

Dengen, C. N., Nurcahyo, A. C., & Kusrini, K. (2019). Penentuan jenis tanaman berdasarkan kemiringan lahan pertanian menggunakan adopsi linier programming berbasis pengolahan citra. Jurnal Buana Informatika, 10(2), 99. https://doi.org/10.24002/jbi.v10i2.2253

Fadjeri, A., Setyanto, A., & Kurniawan, M. P. (2020). Pengolahan citra digital untuk menghitung ekstrasi ciri greenbean kopi robusta dan arabika (studi kasus: Kopi Temanggung). Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), 8(1), 8–10. https://doi.org/10.30646/tikomsin.v8i1.462

Hair, J. F., Babin, B. J., Anderson, R. E., & Black, W. C. (2022). Multivariate data analysis. Cengage Learning. https://books.google.co.id/books?id=PONXEAAAQBAJ

Handayani, I. A. K. T., Sulastri, N. N., & Arthawan, I. G. K. A. (2024). Dampak jangka pendek pengelolaan jerami padi terhadap karbon organik dan rasio CN tanah. JURNAL BETA (BIOSISTEM DAN TEKNIK PERTANIAN, Inpress(Inpress), 1–7.

Haryanto, C., Rahaningsih, N., & Muhammad Basysyar, F. (2023). Komparasi algorima machine learning dalam memprediksi harga rumah. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 533–539. https://doi.org/10.36040/jati.v7i1.6343

Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685–695. https://doi.org/10.1007/s12525-021-00475-2

Kurniastuti, I., & Andini, A. (2018). Perancangan program penentuan histogram citra dengan graphical user interface (GUI). Applied Technology and Computing Science Journal, 1(1), 11–17. https://doi.org/10.33086/atcsj.v1i1.4

Maulida, Z. H., Budisanjaya, I. P. G., Utama, I. M. S., Chaicana, C., & Syahputra, N. H. (2024). Deteksi residu insektisida profenofos pada cabai merah (Capsium annum L.) melalui augmentasi citra dan CNN (Convolutional Neural Network). 12 No 02, 2–3.

Menti, Y., Yusnaini, S., Buchari, H., & Niswati, A. (2020). Respirasi tanah akibat sistem olah tanah dan aplikasi mulsa in situ pada pertanaman kacang hijau (Vigna radiata L.) di Laboratorium Lapang Terpadu, Universitas Lampung. Jurnal Agrotek Tropika, 8(2), 365. https://doi.org/10.23960/jat.v8i2.3911

Mienye, I. D., & Sun, Y. (2022). A survey of ensemble learning: Concepts, algorithms, applications, and prospects. IEEE Access, 10, 99129–99149. https://doi.org/10.1109/ACCESS.2022.3207287

Parkin, T. B., Doran, J. W., & Franco-Vizcaíno, E. (2015). Field and laboratory tests of soil respiration. In J. W. Doran & A. J. Jones (Eds.), SSSA Special Publications (pp. 231–245). Soil Science Society of America. https://doi.org/10.2136/sssaspecpub49.c14

Pebralia, J. (2022). Analisis curah hujan menggunakan machine learning metode regresi linier berganda berbasis python dan jupyter notebook. Jurnal Ilmu Fisika Dan Pembelajarannya (JIFP), 6(2), 23–30. https://doi.org/10.19109/jifp.v6i2.13958

Putri, D. A., Yusnaini, S., Utomo, M., & Niswati, A. (2020). Pengaruh sistem olah tanah dan pemupukan N jangka panjang terhadap respirasi tanah pada pertanaman kedelai (Glycine max L.) di lahan Politeknik Negeri Lampung ke-29. 8, 587–595.

Rasyid, M. I., & Wisudawati, L. M. (2024). Klasifikasi hama ulat pada citra daun sawi berbasis convolutional neural network dengan model Xception. Jutisi : Jurnal Ilmiah Teknik Informatika dan Sistem Informasi, 13(2), 870. https://doi.org/10.35889/jutisi.v13i2.1801

Ratna, S. (2020). Pengolahan citra digital dan histogram dengan python dan text editor Pycharm. Technologia: Jurnal Ilmiah, 11(3), 181. https://doi.org/10.31602/tji.v11i3.3294

Sahoo, K., Samal, A. K., Pramanik, J., & Pani, S. K. (2019). Exploratory Data Analysis using Python. International Journal of Innovative Technology and Exploring Engineering, 8(12), 4727–4735. https://doi.org/10.35940/ijitee.L3591.1081219

Sonata, Y., Sulistyo, S. B., & Wijaya, K. (2020). Deteksi dini penyakit pada daun stroberi berbasis pengolahan citra. 1, 30–36.

Suyono, S., Astuti, R., & M. Basysyar, F. (2024). Implementasi data mining untuk prediksi produksi bawang merah di Kabupaten Brebes. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 734–740. https://doi.org/10.36040/jati.v8i1.8399

Syarifah, A., Riadi, A. A., & Susanto, A. (2022). Klasifikasi tingkat kematangan jambu bol berbasis pengolahan citra digital menggunakan metode K-Nearest Neighbor. JIMP : Jurnal Informatika Merdeka Pasuruan, 7, 27–30. https://dx.doi.org/10.37438/jimp.v7i1.417

Tong, D., Li, Z., Xiao, H., Nie, X., Liu, C., & Zhou, M. (2021). How do soil microbes exert impact on soil respiration and its temperature sensitivity? Environmental Microbiology, 23(6), 3048–3058. https://doi.org/10.1111/1462-2920.15520

Diterbitkan

2025-09-30

Versi

Cara Mengutip

Maheswari, N. L. G. E. A., Sulastri, N. N., Budisanjaya, I. P. G., & Arthawan, I. G. K. A. (2025). Estimasi Nilai Respirasi Tanah Menggunakan Metode Tabung Mikrorespirasi dengan Pengolahan Citra: Estimation of Soil Respiration based on Microrespiration Tube Method using Image Processing. Jurnal BETA (Biosistem Dan Teknik Pertanian), 13(2), 200–208. https://doi.org/10.24843/j.beta.2025.v13.i02.p01

Terbitan

Bagian

Articles

Artikel paling banyak dibaca berdasarkan penulis yang sama

1 2 > >>