Air Teraktivasi Plasma: Mekanisme activasi dan Sifat Fisiko-kimia

Penulis

  • Gede Arda Program Studi Teknik Pertanian, Fakultas Teknologi Pertanian Universitas Udayana, Badung, Bali, Indonesia
  • Dian Mart Shoodiqin Program Studi Fisika, Institut Teknologi Kalimantan,Balikpapan, Indonesia

DOI:

https://doi.org/10.24843/JBETA.2024.v12.i01.p23

Kata Kunci:

plasma, air teraktifasi plasma, mekanisme, reaktif spesies

Abstrak

Teknologi plasma dikembangkan akhir - akhir ini karena sifatnya yang unik dan dapat dimanfaatkan dalam berbagai tujuan di berbagai bidang. Plasma merupakan gas yang molekul - molekul penyusunnya terdisosiasi sehingga mempunya sifat reaktif. Namun karena sifatn ya itu pula plasma harus digunakan saat plasma dibangkitkan. Mengaktivasi air dengan plasma ternyata mengakibatkan perubahan air menjadi lebih reaktif sehingga dapat dimanfaatkan untuk tujuan yang serupa dengan plasma dalam bentuk gas. Kajian literatur ini menyajikan tentang teknologi aktivasi air dengan plasma dari sudut pandang mekanisme pembangkitan dan reaksi - reaksi yang menyertainya. Artikel ini disajikan untuk memperkenalkan teknologi plasma yang saat ini masih minim dikaji di Indonesia.

Referensi

Dobrynin, D., Fridman, G., Friedman, G., & Fridman, A. (2009). Physical and biological mechanisms of direct plasma interaction with living tissue. New Journal of Physics, 11. https://doi.org/10.1088/1367-2630/11/11/115020

Dobrynin, D., Friedman, G., Fridman, A., & Starikovskiy, A. (2011). Inactivation of bacteria using DC corona discharge: Role of ions and humidity. New Journal of Physics, 13. https://doi.org/10.1088/1367-2630/13/10/103033

Ferrer-Sueta, G., & Radi, R. (2009). Chemical biology of peroxynitrite: Kinetics, diffusion, and radicals. ACS Chemical Biology, 4(3), 161–177. https://doi.org/10.1021/cb800279q

Imlay, J. A., Chin, S. M., & Linn, S. (1986). Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science, 240, 2–5.

Keyer, K., Gort, A. S., & Imlay, J. A. (1995). Superoxide and the production of oxidative DNA damage. Journal of Bacteriology, 177(23), 6782–6790. https://doi.org/10.1128/jb.177.23.6782-6790.1995

Khlyustova, A., Labay, C., Machala, Z., Ginebra, M. P., & Canal, C. (2019). Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: A brief review. Frontiers of Chemical Science and Engineering, 13(2), 238–252. https://doi.org/10.1007/s11705-019-1801-8

Liu, D. X., Liu, Z. C., Chen, C., Yang, A. J., Li, D., Rong, M. Z., Chen, H. L., & Kong, M. G. (2016a). Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways. Scientific Reports, 6, 1–11. https://doi.org/10.1038/srep23737

Liu, D. X., Liu, Z. C., Chen, C., Yang, A. J., Li, D., Rong, M. Z., Chen, H. L., & Kong, M. G. (2016b). Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways. Scientific Reports, 6, 1–11. https://doi.org/10.1038/srep23737

Lukes, P., Brisset, J. L., & Locke, B. R. (2012). Biological effects of electrical discharge plasma in water and in gas-liquid environments. In Plasma chemistry and catalysis in gases and liquids (pp. 309–352). https://doi.org/10.1002/9783527649525.ch8

Lukes, P., Dolezalova, E., Sisrova, I., & Clupek, M. (2014). Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: Evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H₂O₂ and HNO₂. Plasma Sources Science and Technology, 23(1). https://doi.org/10.1088/0963-0252/23/1/015019

Lymar, S. V., & Hurst, J. K. (1996). Carbon dioxide: Physiological catalyst for peroxynitrite-mediated cellular damage or cellular protectant? Chemical Research in Toxicology, 9(5), 845–850. https://doi.org/10.1021/tx960046z

Majou, D., & Christieans, S. (2018). Mechanisms of the bactericidal effects of nitrate and nitrite in cured meats. Meat Science, 145, 273–284. https://doi.org/10.1016/j.meatsci.2018.06.013

Murakami, T., Niemi, K., Gans, T., O’Connell, D., & Graham, W. G. (2013). Chemical kinetics and reactive species in atmospheric pressure helium-oxygen plasmas with humid-air impurities. Plasma Sources Science and Technology, 22(1), 1–29. https://doi.org/10.1088/0963-0252/22/1/015003

Park, J. Y., Park, S., Choe, W., Yong, H. I., Jo, C., & Kim, K. (2017). Plasma-functionalized solution: A potent antimicrobial agent for biomedical applications from antibacterial therapeutics to biomaterial surface engineering. ACS Applied Materials and Interfaces, 9(50), 43470–43477. https://doi.org/10.1021/acsami.7b14276

Perinban, S., Orsat, V., & Raghavan, V. (2019). Nonthermal plasma–liquid interactions in food processing: A review. Comprehensive Reviews in Food Science and Food Safety, 18(6), 1985–2008. https://doi.org/10.1111/1541-4337.12503

Pignata, C., D’Angelo, D., Fea, E., & Gilli, G. (2017). A review on microbiological decontamination of fresh produce with nonthermal plasma. Journal of Applied Microbiology, 122(6), 1438–1455. https://doi.org/10.1111/jam.13412

Shainsky, N., Dobrynin, D., Ercan, U., Joshi, S., Fridman, G., Friedman, G., & Fridman, A. (2010). Effect of liquid modified by non-equilibrium atmospheric pressure plasmas on bacteria inactivation rates. 115020, 1. https://doi.org/10.1109/plasma.2010.5533900

Singh, S., Chauhan, A. K., & Ranjan, R. (2021). Cold plasma - Novel method of food preservation: A review. Indian Food Industry Magazine, July, 1–12.

Sun, P., Wu, H., Bai, N., Zhou, H., Wang, R., Feng, H., Zhu, W., Zhang, J., & Fang, J. (2012). Inactivation of Bacillus subtilis spores in water by a direct-current, cold atmospheric-pressure air plasma microjet. Plasma Processes and Polymers, 9(2), 157–164. https://doi.org/10.1002/ppap.201100041

Thirumdas, R., Kothakota, A., Annapure, U., Siliveru, K., Blundell, R., Gatt, R., & Valdramidis, V. P. (2018). Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. In Trends in Food Science and Technology, 77 (pp. 21–31). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2018.05.007

Van Durme, J., Nikiforov, A., Vandamme, J., Leys, C., & De Winne, A. (2014). Accelerated lipid oxidation using non-thermal plasma technology: Evaluation of volatile compounds. Food Research International, 62, 868–876. https://doi.org/10.1016/j.foodres.2014.04.043

Verlackt, C. C. W., Van Boxem, W., & Bogaerts, A. (2018a). Transport and accumulation of plasma generated species in aqueous solution. Physical Chemistry Chemical Physics, 20(10), 6845–6859. https://doi.org/10.1039/C7CP07593F

Verlackt, C. C. W., Van Boxem, W., & Bogaerts, A. (2018b). Transport and accumulation of plasma generated species in aqueous solution. Physical Chemistry Chemical Physics, 20(10), 6845–6859. https://doi.org/10.1039/C7CP07593F

Xiang, Q., Liu, X., Liu, S., Ma, Y., Xu, C., & Bai, Y. (2019). Effect of plasma-activated water on microbial quality and physicochemical characteristics of mung bean sprouts. Innovative Food Science and Emerging Technologies, 52, 49–56. https://doi.org/10.1016/j.ifset.2018.11.012

Xu, Z., Shen, J., Zhang, Z., Ma, J., Ma, R., Zhao, Y., Sun, Q., Qian, S., Zhang, H., Ding, L., Cheng, C., Chu, P. K., & Xia, W. (2015). Inactivation effects of non-thermal atmospheric-pressure helium plasma jet on Staphylococcus aureus biofilms. Plasma Processes and Polymers, 12(8), 827–835. https://doi.org/10.1002/ppap.201500006

Zhou, R., Zhou, R., Prasad, K., Fang, Z., Speight, R., Bazaka, K., & Ostrikov, K. (2018). Cold atmospheric plasma activated water as a prospective disinfectant: The crucial role of peroxynitrite. Green Chemistry, 20(23), 5276–5284. https://doi.org/10.1039/c8gc02800a

Zhou, R., Zhou, R., Wang, P., Xian, Y., Mai-Prochnow, A., Lu, X., Cullen, P. J., Ostrikov, K. (Ken), & Bazaka, K. (2020). Plasma-activated water: Generation, origin of reactive species and biological applications. Journal of Physics D: Applied Physics, 53(30), 303001. https://doi.org/10.1088/1361-6463/ab81cf

Unduhan

Diterbitkan

2024-04-30

Cara Mengutip

Arda, G., & Shoodiqin, D. M. (2024). Air Teraktivasi Plasma: Mekanisme activasi dan Sifat Fisiko-kimia. Jurnal BETA (Biosistem Dan Teknik Pertanian), 12(1), 205–212. https://doi.org/10.24843/JBETA.2024.v12.i01.p23

Terbitan

Bagian

Articles

Artikel paling banyak dibaca berdasarkan penulis yang sama

1 2 > >>