Naskah ini versi lama yang diterbitkan pada 2023-09-30. Baca versi terbaru.

Aplikasi Plasma Dingin pada Produk Segar

Penulis

  • Program Studi Teknik Pertanian dan Biosistem, Fakultas Teknologi Pertanian, Universitas Udayana, Bali, Indonesia

DOI:

https://doi.org/10.24843//JBETA.2023.v11.i02.p19%20Abstract

Kata Kunci:

plasma dingin, produk segar, sifat fisiologi, keamanan pangan

Abstrak

Plasma non-termal adalah gas terionisasi yang terdiri dari molekul netral, atom tereksitasi, dan molekul
bermuatan. Beberapa molekul sangat reaktif sehingga bereaksi dengan cepat terhadap bahan organik atau
non-organik. Karena sifatnya, plasma baru-baru ini diterapkan untuk mendekontaminasi produk pertanian
dari berbagai kontaminan. Dalam produk segar seperti buah dan sayuran, plasma non-termal digunakan
untuk membunuh bakteri dan mikroorganisme lain yang menempel pada permukaan produk, atau untuk
mendegradasi residu pestisida yang melapisi produk. Kontaminan ini mempengaruhi kualitas produk
dengan cara tertentu sehingga dapat mengurangi keuntungan yang diperoleh produsen, penangan, dan
penjual. Beberapa mekanisme yang menjelaskan bagaimana plasma non-termal mengurangi tingkat
kontaminan telah diusulkan oleh para peneliti. Intinya adalah spesies reaktif merusak dinding sel
mikroorganisme sehingga tidak dapat hidup atau rusak, dan mereka juga dapat bereaksi terhadap senyawa
pestisida dan mendegradasinya menjadi senyawa yang tidak terlalu berbahaya. Namun, spesies reaktif yang
sama tidak hanya bereaksi terhadap materi target tetapi juga bereaksi terhadap jaringan produk di sekitar
plasma yang diaplikasikan dan mempengaruhi kualitas produk yang diolah. Makalah ini mengulas
pengaruh plasma non-termal terhadap kualitas produk segar dari sudut pandang fisik, fisiologis, kimia, dan
mikrobiologis.

Referensi

Al-Mazrou. (2004). Food poisoning. Saudi Med J,

25(1), 11–14. www.smj.org.sa

Bang, I. H., Lee, E. S., Lee, H. S., & Min, S. C.

(2020). Microbial decontamination system

combining antimicrobial solution washing and

atmospheric dielectric barrier discharge cold

plasma treatment for preservation of

mandarins. Postharvest Biology and

Technology, 162(September 2019), 111102.

https://doi.org/10.1016/j.postharvbio.2019.111

102

Barrett, D. M., Beaulieu, J. C., & Shewfelt, R.

(2010). Color, flavor, texture, and nutritional

quality of fresh-cut fruits and vegetables:

Desirable levels, instrumental and sensory

measurement, and the effects of processing.

Critical Reviews in Food Science and

Nutrition, 50(5), 369–389.

https://doi.org/10.1080/10408391003626322

Bermúdez-Aguirre, D., & Barbosa-Cánovas, G. V.

(2013). Disinfection of selected vegetables

under nonthermal treatments: Chlorine, acid

citric, ultraviolet light and ozone. Food

Control, 29(1), 82–90.

https://doi.org/10.1016/j.foodcont.2012.05.073

Elez Garofulić, I., Režek Jambrak, A., Milošević, S.,

Dragović-Uzelac, V., Zorić, Z., & Herceg, Z.

(2015). The effect of gas phase plasma treatment on the anthocyanin and phenolic acid

content of sour cherry Marasca (Prunus

cerasus var. Marasca) juice. LWT - Food

Science and Technology, 62(1), 894–900.

https://doi.org/10.1016/J.LWT.2014.08.036

Go, S. M., Park, M. R., Kim, H. S., Choi, W. S., &

Jeong, R. D. (2019). Antifungal effect of non

thermal atmospheric plasma and its application

for control of postharvest Fusarium oxysporum

decay of paprika. Food Control, 98, 245–252.

https://doi.org/10.1016/j.foodcont.2018.11.028

Gómez-López, V. M., Ragaert, P., Debevere, J., &

Devlieghere, F. (2007). Pulsed light for food

decontamination: a review. Trends in Food

Science and Technology, 18(9), 464–473.

https://doi.org/10.1016/j.tifs.2007.03.010

Herceg, Z., Kovačević, D. B., Kljusurić, J. G.,

Jambrak, A. R., Zorić, Z., & Dragović-Uzelac,

V. (2016). Gas phase plasma impact on

phenolic compounds in pomegranate juice.

Food Chemistry, 190, 665–672.

https://doi.org/10.1016/J.FOODCHEM.2015.0

5.135

Joshi, S. G., Cooper, M., Yost, A., Paff, M., Ercan,

U. K., Fridman, G., Friedman, G., Fridman,

A., & Brooks, A. D. (2011). Nonthermal

dielectric-barrier discharge plasma-induced

inactivation involves oxidative DNA damage

and membrane lipid peroxidation in

Escherichia coli. Antimicrobial Agents and

Chemotherapy, 55(3), 1053–1062.

https://doi.org/10.1128/AAC.01002-10

Lacombe, A., Niemira, B. A., Gurtler, J. B., Fan, X.,

Sites, J., Boyd, G., & Chen, H. (2015).

Atmospheric cold plasma inactivation of

aerobic microorganisms on blueberries and

effects on quality attributes. Food

Microbiology, 46, 479–484.

https://doi.org/10.1016/j.fm.2014.09.010

Lepeduš, H., Jozić, M., Štolfa, I., Pavičić, N.,

Hackenberger, B. K., & Cesar, V. (2005).

Changes in peroxidase activity in the peel of

Unshiu mandarin (Citrus unshiu Marc.) fruit

with different storage treatments. Food

Technology and Biotechnology, 43(1), 71–77.

https://hrcak.srce.hr/110432

Misra, N. N., Keener, K. M., Bourke, P., Mosnier, J.

P., & Cullen, P. J. (2014). In-package

atmospheric pressure cold plasma treatment of

cherry tomatoes. Journal of Bioscience and

Bioengineering, 118(2), 177–182.

https://doi.org/10.1016/j.jbiosc.2014.02.005

Misra, N. N., Patil, S., Moiseev, T., Bourke, P.,

Mosnier, J. P., Keener, K. M., & Cullen, P. J.

(2014). In-package atmospheric pressure cold

plasma treatment of strawberries. Journal of Food Engineering, 125(1), 131–138.

https://doi.org/10.1016/j.jfoodeng.2013.10.023

Mravlje, J., Regvar, M., Starič, P., Mozetič, M., &

Vogel-Mikuš, K. (2021). Cold plasma affects

germination and fungal community structure

of buckwheat seeds. Plants, 10(5), 851.

https://doi.org/10.3390/PLANTS10050851/S1

Mravlje, J., Regvar, M., & Vogel-Mikuš, K. (2021).

Development of Cold Plasma Technologies for

Surface Decontamination of Seed Fungal

Pathogens: Present Status and Perspectives.

Journal of Fungi 2021, Vol. 7, Page 650, 7(8),

650. https://doi.org/10.3390/JOF7080650

Mukhopadhyay, S., & Ramaswamy, R. (2012).

Application of emerging technologies to

control Salmonella in foods: A review. Food

Research International, 45(2), 666–677.

https://doi.org/10.1016/j.foodres.2011.05.016

Oehmigen, K., Hähnel, M., Brandenburg, R., Wilke,

C., Weltmann, K. D., & Von Woedtke, T.

(2010). The role of acidification for

antimicrobial activity of atmospheric pressure

plasma in liquids. Plasma Processes and

Polymers, 7(3–4), 250–257.

https://doi.org/10.1002/ppap.200900077

Olaimat, A. N., & Holley, R. A. (2012). Factors

influencing the microbial safety of fresh

produce: A review. Food Microbiology, 32(1),

1–19. https://doi.org/10.1016/j.fm.2012.04.016

Paixão, L. M. N., Fonteles, T. V., Oliveira, V. S.,

Fernandes, F. A. N., & Rodrigues, S. (2019).

Cold Plasma Effects on Functional

Compounds of Siriguela Juice. Food and

Bioprocess Technology, 12(1), 110–121.

https://doi.org/10.1007/s11947-018-2197-z

Ramazzina, I., Berardinelli, A., Rizzi, F., Tappi, S.,

Ragni, L., Sacchetti, G., & Rocculi, P. (2015).

Effect of cold plasma treatment on physico

chemical parameters and antioxidant activity

of minimally processed kiwifruit. Postharvest

Biology and Technology, 107, 55–65.

https://doi.org/10.1016/j.postharvbio.2015.04.0

08

Ritchie, H., Rosado, P., & Roser, M. (2023). Diet

Compositions. Our World in Data.

https://ourworldindata.org/diet-compositions

Rodríguez, Ó., Gomes, W. F., Rodrigues, S., &

Fernandes, F. A. N. (2017). Effect of indirect

cold plasma treatment on cashew apple juice

(Anacardium occidentale L.). LWT, 84, 457

463.

https://doi.org/10.1016/J.LWT.2017.06.010

Scholtz, V., Jirešová, J., Šerá, B., & Julák, J. (2021).

A Review of Microbial Decontamination of

Cereals by Non-Thermal Plasma. Foods 2021, Vol. 10, Page 2927, 10(12), 2927.

https://doi.org/10.3390/FOODS10122927

Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., &

Julak, J. (2015). Nonthermal plasma — A tool

for decontamination and disinfection.

Biotechnology Advances, 33(6), 1108–1119.

https://doi.org/10.1016/j.biotechadv.2015.01.0

02

Stintzing, F. C., & Carle, R. (2004). Functional

properties of anthocyanins and betalains in

plants, food, and in human nutrition. Trends in

Food Science and Technology, 15(1), 19–38.

https://doi.org/10.1016/j.tifs.2003.07.004

Tappi, S., Gozzi, G., Vannini, L., Berardinelli, A.,

Romani, S., Ragni, L., & Rocculi, P. (2016).

Cold plasma treatment for fresh-cut melon

stabilization. Innovative Food Science and

Emerging Technologies, 33, 225–233.

https://doi.org/10.1016/j.ifset.2015.12.022

Toivonen, P. M. A., & Brummell, D. A. (2008).

Biochemical bases of appearance and texture

changes in fresh-cut fruit and vegetables.

Postharvest Biology and Technology, 48(1), 1

14.

https://doi.org/10.1016/j.postharvbio.2007.09.0

04

Veerana, M., Yu, N., Ketya, W., & Park, G. (2022).

Application of Non-Thermal Plasma to Fungal

Resources. Journal of Fungi 2022, Vol. 8,

Page 102, 8(2), 102.

https://doi.org/10.3390/JOF8020102

Wang, R. X., Nian, W. F., Wu, H. Y., Feng, H. Q.,

Zhang, K., Zhang, J., Zhu, W. D., Becker, K.

H., & Fang, J. (2012). Atmospheric-pressure

cold plasma treatment of contaminated fresh

fruit and vegetable slices: Inactivation and

physiochemical properties evaluation.

European Physical Journal D, 66(10).

https://doi.org/10.1140/epjd/e2012-30053-1

Wismer, W. V. (2014). Consumer Eating Habits and

Perceptions of Fresh Produce Quality. In

Postharvest Handling: A Systems Approach.

Elsevier Inc. https://doi.org/10.1016/B978-0

12-408137-6.00003-X

Won, M. Y., Lee, S. J., & Min, S. C. (2017).

Mandarin preservation by microwave-powered

cold plasma treatment. Innovative Food

Science and Emerging Technologies, 39, 25

32. https://doi.org/10.1016/j.ifset.2016.10.021

Xiang, Q., Liu, X., Liu, S., Ma, Y., Xu, C., & Bai,

Y. (2019). Effect of plasma-activated water on

microbial quality and physicochemical

characteristics of mung bean sprouts.

Innovative Food Science and Emerging

Technologies, 52, 49–56.

https://doi.org/10.1016/j.ifset.2018.11.012

Unduhan

Diterbitkan

2023-09-30

Versi

Cara Mengutip

Gede. (2023). Aplikasi Plasma Dingin pada Produk Segar . Jurnal BETA (Biosistem Dan Teknik Pertanian), 11(2), 411–417. https://doi.org/10.24843//JBETA.2023.v11.i02.p19 Abstract

Terbitan

Bagian

Articles

Artikel paling banyak dibaca berdasarkan penulis yang sama

1 2 > >>