PENGEMBANGAN ALGORITMA IMAGE PROCESSING UNTUK MENDUGA HASIL PANEN PADI

Authors

  • Made Arya Bhaskara Putra Program Studi Teknik Pertanian, Fakultas Teknologi Pertanian, Universitas Udayana
  • I Made Anom S. Wijaya Program Studi Teknik Pertanian, Fakultas Teknologi Pertanian, Universitas Udayana
  • Yohanes Setiyo Program Studi Teknik Pertanian, Fakultas Teknologi Pertanian, Universitas Udayana

DOI:

https://doi.org/10.24843/j.beta.2015.v03.i01.p04

Keywords:

image processing analysis, image processing algorithm, structuring elements, custom thresholding, numbers of grain pixel

Abstract

The aims of this research were to develop image processing algorithm that can be used for rice yield estimation. This research consist of: 1) image acquisition, 2) image analysis with Adobe Photoshop Cs 4 and MATLAB R2009B, and 3) make the algorithm that suitable for rice yield estimation. This research was testing three method of image processing, i.e. manual pre-processing, thresholding method, and shape of Structuring Elements (SE). Forming algorithm was done by analyzing image yield and be compare with real image. More like image yield with real image, then this method was suitable for doing rice image analysis. The result of analysis showed that process of rice image analysis have to be started with manual pre-processing, using custom thresholding method, and morphology with SE shape disk. The result image of the algorithm showed the most appropriate grain image with real image, and there’s no more image that identified as a grain. Based on number of pixel, the image yield of this method is 117.407 pixel. In conclusion, the algorithm for estimation of rice yield, consist of: image acquisition, manual pre-processing, gray scaling, thresholding custom, morphology with SE shape disk, image resize, and calculation of the number of pixel grain.

References

Anonim. 2013. Survei Sosial Ekonomi Nasional, 2007-2013. Konsumsi Rata-Rata per Kapita Setahun Beberapa Bahan Makanan di Indonesia, 2009-2013. http://www.deptan.go.id/Indokator/tabel-15b-konsumsi-rata.pdf (Diakses tanggal 21 Maret 2014).

Anwarningsih, S. H., A. Z. Arifin, dan A. Yunarti. 2010. Estimasi Bentuk Strukturin Element Berdasarkan Representasi Objek. Jurnal Ilmiah Krusor. 5:157-165.

Gonzalez, C. R. 2009. Digital Image Processing Second Edition. University of Tennessee. Canada: Addison-Wesley Publishing Company. Ebook From: http://www.gatesmark.com. Makarim A. K., dan E. Suhartatik. 2009. Morfologi dan Fisiologi Tanaman Padi.

Balai Besar Penelitian Tanaman Padi. http://www.litbang.deptan.go.id/special/padibbpadi2009itkp11. pdf (Diakses tanggal: 20 Februari 2014).

Prihatman, K. 2000. Teknologi Tepat Guna Budidaya Pertanian Padi (Orysa Sativa). Ristek, Bidang Pendayagunaan dan Pemasyarakatan Ilmu Pengetahuan dan Teknologi. Jakarta. http://www.warintek.ristek.go.id/perta nian/padi.pdf (Diakses tanggal: 20 Februari 2014).

Putra, D. 2004. Binerisasi Citra Tangan dengan Metode Otsu. Jurusan Teknik Elektro. Fakultas Teknik. Universitas Udayana. Bali

Subrata, dan R. Kusmana. 2003. Koreksi Terhadap Cara Pengukuran Ubinan Tanaman Padi. Balai Pengkaji Teknologi Pertanian. Jawa Barat. Buletin Teknik Pertanian Vol. 8. No. 1.

Suhandy, D. 2001. Pengembangan Algoritma Image processing untuk Menduga Kemasakan Buah Manggis Segar. Jurusan Teknik Pertanian. Fakultas Teknologi Pertanian. Institut Pertanian Bogor.

Wahyunto, W., dan B. Heryanto. 2006. Informatika Pertanian Volume 15. Pendugaan Produktivitas Tanaman Padi Sawah Melalui Analisis Citra Satelit. Peneliti Balai Besar Litbang Sumberdaya Lahan Pertanian.

Zhou H., J. Wu, dan J. Zhang. 2010. Digital Image Processing: Part I. Ebook from: http://www.bookboon.com.

Published

2015-12-11

How to Cite

Putra, M. A. B., Wijaya, I. M. A. S., & Setiyo, Y. (2015). PENGEMBANGAN ALGORITMA IMAGE PROCESSING UNTUK MENDUGA HASIL PANEN PADI. Jurnal BETA (Biosistem Dan Teknik Pertanian), 3(1), 1–12. https://doi.org/10.24843/j.beta.2015.v03.i01.p04

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 > >>